This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of two full functors is full. Proposition 3.30(d) in Adamek p. 35. (Contributed by Mario Carneiro, 28-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cofull.f | |- ( ph -> F e. ( C Full D ) ) |
|
| cofull.g | |- ( ph -> G e. ( D Full E ) ) |
||
| Assertion | cofull | |- ( ph -> ( G o.func F ) e. ( C Full E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofull.f | |- ( ph -> F e. ( C Full D ) ) |
|
| 2 | cofull.g | |- ( ph -> G e. ( D Full E ) ) |
|
| 3 | relfunc | |- Rel ( C Func E ) |
|
| 4 | fullfunc | |- ( C Full D ) C_ ( C Func D ) |
|
| 5 | 4 1 | sselid | |- ( ph -> F e. ( C Func D ) ) |
| 6 | fullfunc | |- ( D Full E ) C_ ( D Func E ) |
|
| 7 | 6 2 | sselid | |- ( ph -> G e. ( D Func E ) ) |
| 8 | 5 7 | cofucl | |- ( ph -> ( G o.func F ) e. ( C Func E ) ) |
| 9 | 1st2nd | |- ( ( Rel ( C Func E ) /\ ( G o.func F ) e. ( C Func E ) ) -> ( G o.func F ) = <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. ) |
|
| 10 | 3 8 9 | sylancr | |- ( ph -> ( G o.func F ) = <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. ) |
| 11 | 1st2ndbr | |- ( ( Rel ( C Func E ) /\ ( G o.func F ) e. ( C Func E ) ) -> ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) ) |
|
| 12 | 3 8 11 | sylancr | |- ( ph -> ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) ) |
| 13 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 14 | eqid | |- ( Hom ` E ) = ( Hom ` E ) |
|
| 15 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 16 | relfull | |- Rel ( D Full E ) |
|
| 17 | 2 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( D Full E ) ) |
| 18 | 1st2ndbr | |- ( ( Rel ( D Full E ) /\ G e. ( D Full E ) ) -> ( 1st ` G ) ( D Full E ) ( 2nd ` G ) ) |
|
| 19 | 16 17 18 | sylancr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` G ) ( D Full E ) ( 2nd ` G ) ) |
| 20 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 21 | relfunc | |- Rel ( C Func D ) |
|
| 22 | 5 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Func D ) ) |
| 23 | 1st2ndbr | |- ( ( Rel ( C Func D ) /\ F e. ( C Func D ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
|
| 24 | 21 22 23 | sylancr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Func D ) ( 2nd ` F ) ) |
| 25 | 20 13 24 | funcf1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) : ( Base ` C ) --> ( Base ` D ) ) |
| 26 | simprl | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> x e. ( Base ` C ) ) |
|
| 27 | 25 26 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` x ) e. ( Base ` D ) ) |
| 28 | simprr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> y e. ( Base ` C ) ) |
|
| 29 | 25 28 | ffvelcdmd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` F ) ` y ) e. ( Base ` D ) ) |
| 30 | 13 14 15 19 27 29 | fullfo | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -onto-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 31 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 32 | relfull | |- Rel ( C Full D ) |
|
| 33 | 1 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> F e. ( C Full D ) ) |
| 34 | 1st2ndbr | |- ( ( Rel ( C Full D ) /\ F e. ( C Full D ) ) -> ( 1st ` F ) ( C Full D ) ( 2nd ` F ) ) |
|
| 35 | 32 33 34 | sylancr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( 1st ` F ) ( C Full D ) ( 2nd ` F ) ) |
| 36 | 20 15 31 35 26 28 | fullfo | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) |
| 37 | foco | |- ( ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) : ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) -onto-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) /\ ( x ( 2nd ` F ) y ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` F ) ` x ) ( Hom ` D ) ( ( 1st ` F ) ` y ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
|
| 38 | 30 36 37 | syl2anc | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 39 | 7 | adantr | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> G e. ( D Func E ) ) |
| 40 | 20 22 39 26 28 | cofu2nd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) = ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) ) |
| 41 | eqidd | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( Hom ` C ) y ) = ( x ( Hom ` C ) y ) ) |
|
| 42 | 20 22 39 26 | cofu1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` x ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ) |
| 43 | 20 22 39 28 | cofu1 | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( 1st ` ( G o.func F ) ) ` y ) = ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) |
| 44 | 42 43 | oveq12d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) = ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) |
| 45 | 40 41 44 | foeq123d | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) <-> ( ( ( ( 1st ` F ) ` x ) ( 2nd ` G ) ( ( 1st ` F ) ` y ) ) o. ( x ( 2nd ` F ) y ) ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` G ) ` ( ( 1st ` F ) ` x ) ) ( Hom ` E ) ( ( 1st ` G ) ` ( ( 1st ` F ) ` y ) ) ) ) ) |
| 46 | 38 45 | mpbird | |- ( ( ph /\ ( x e. ( Base ` C ) /\ y e. ( Base ` C ) ) ) -> ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) |
| 47 | 46 | ralrimivva | |- ( ph -> A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) |
| 48 | 20 14 31 | isfull2 | |- ( ( 1st ` ( G o.func F ) ) ( C Full E ) ( 2nd ` ( G o.func F ) ) <-> ( ( 1st ` ( G o.func F ) ) ( C Func E ) ( 2nd ` ( G o.func F ) ) /\ A. x e. ( Base ` C ) A. y e. ( Base ` C ) ( x ( 2nd ` ( G o.func F ) ) y ) : ( x ( Hom ` C ) y ) -onto-> ( ( ( 1st ` ( G o.func F ) ) ` x ) ( Hom ` E ) ( ( 1st ` ( G o.func F ) ) ` y ) ) ) ) |
| 49 | 12 47 48 | sylanbrc | |- ( ph -> ( 1st ` ( G o.func F ) ) ( C Full E ) ( 2nd ` ( G o.func F ) ) ) |
| 50 | df-br | |- ( ( 1st ` ( G o.func F ) ) ( C Full E ) ( 2nd ` ( G o.func F ) ) <-> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Full E ) ) |
|
| 51 | 49 50 | sylib | |- ( ph -> <. ( 1st ` ( G o.func F ) ) , ( 2nd ` ( G o.func F ) ) >. e. ( C Full E ) ) |
| 52 | 10 51 | eqeltrd | |- ( ph -> ( G o.func F ) e. ( C Full E ) ) |