This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icoopn.a | |- ( ph -> A e. RR ) |
|
| icoopn.c | |- ( ph -> C e. RR* ) |
||
| icoopn.b | |- ( ph -> B e. RR* ) |
||
| icoopn.k | |- K = ( topGen ` ran (,) ) |
||
| icoopn.j | |- J = ( K |`t ( A [,) B ) ) |
||
| icoopn.cleb | |- ( ph -> C <_ B ) |
||
| Assertion | icoopn | |- ( ph -> ( A [,) C ) e. J ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icoopn.a | |- ( ph -> A e. RR ) |
|
| 2 | icoopn.c | |- ( ph -> C e. RR* ) |
|
| 3 | icoopn.b | |- ( ph -> B e. RR* ) |
|
| 4 | icoopn.k | |- K = ( topGen ` ran (,) ) |
|
| 5 | icoopn.j | |- J = ( K |`t ( A [,) B ) ) |
|
| 6 | icoopn.cleb | |- ( ph -> C <_ B ) |
|
| 7 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 8 | 4 7 | eqeltri | |- K e. Top |
| 9 | 8 | a1i | |- ( ph -> K e. Top ) |
| 10 | ovexd | |- ( ph -> ( A [,) B ) e. _V ) |
|
| 11 | iooretop | |- ( -oo (,) C ) e. ( topGen ` ran (,) ) |
|
| 12 | 11 4 | eleqtrri | |- ( -oo (,) C ) e. K |
| 13 | 12 | a1i | |- ( ph -> ( -oo (,) C ) e. K ) |
| 14 | elrestr | |- ( ( K e. Top /\ ( A [,) B ) e. _V /\ ( -oo (,) C ) e. K ) -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) ) |
|
| 15 | 9 10 13 14 | syl3anc | |- ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) e. ( K |`t ( A [,) B ) ) ) |
| 16 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 17 | 16 | adantr | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A e. RR* ) |
| 18 | 2 | adantr | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> C e. RR* ) |
| 19 | elinel1 | |- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( -oo (,) C ) ) |
|
| 20 | elioore | |- ( x e. ( -oo (,) C ) -> x e. RR ) |
|
| 21 | 19 20 | syl | |- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR ) |
| 22 | 21 | rexrd | |- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. RR* ) |
| 23 | 22 | adantl | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. RR* ) |
| 24 | 3 | adantr | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> B e. RR* ) |
| 25 | elinel2 | |- ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) -> x e. ( A [,) B ) ) |
|
| 26 | 25 | adantl | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) B ) ) |
| 27 | icogelb | |- ( ( A e. RR* /\ B e. RR* /\ x e. ( A [,) B ) ) -> A <_ x ) |
|
| 28 | 17 24 26 27 | syl3anc | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> A <_ x ) |
| 29 | mnfxr | |- -oo e. RR* |
|
| 30 | 29 | a1i | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> -oo e. RR* ) |
| 31 | 19 | adantl | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( -oo (,) C ) ) |
| 32 | iooltub | |- ( ( -oo e. RR* /\ C e. RR* /\ x e. ( -oo (,) C ) ) -> x < C ) |
|
| 33 | 30 18 31 32 | syl3anc | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x < C ) |
| 34 | 17 18 23 28 33 | elicod | |- ( ( ph /\ x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) -> x e. ( A [,) C ) ) |
| 35 | 29 | a1i | |- ( ( ph /\ x e. ( A [,) C ) ) -> -oo e. RR* ) |
| 36 | 2 | adantr | |- ( ( ph /\ x e. ( A [,) C ) ) -> C e. RR* ) |
| 37 | icossre | |- ( ( A e. RR /\ C e. RR* ) -> ( A [,) C ) C_ RR ) |
|
| 38 | 1 2 37 | syl2anc | |- ( ph -> ( A [,) C ) C_ RR ) |
| 39 | 38 | sselda | |- ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR ) |
| 40 | 39 | mnfltd | |- ( ( ph /\ x e. ( A [,) C ) ) -> -oo < x ) |
| 41 | 16 | adantr | |- ( ( ph /\ x e. ( A [,) C ) ) -> A e. RR* ) |
| 42 | simpr | |- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) C ) ) |
|
| 43 | icoltub | |- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> x < C ) |
|
| 44 | 41 36 42 43 | syl3anc | |- ( ( ph /\ x e. ( A [,) C ) ) -> x < C ) |
| 45 | 35 36 39 40 44 | eliood | |- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( -oo (,) C ) ) |
| 46 | 3 | adantr | |- ( ( ph /\ x e. ( A [,) C ) ) -> B e. RR* ) |
| 47 | 39 | rexrd | |- ( ( ph /\ x e. ( A [,) C ) ) -> x e. RR* ) |
| 48 | icogelb | |- ( ( A e. RR* /\ C e. RR* /\ x e. ( A [,) C ) ) -> A <_ x ) |
|
| 49 | 41 36 42 48 | syl3anc | |- ( ( ph /\ x e. ( A [,) C ) ) -> A <_ x ) |
| 50 | 6 | adantr | |- ( ( ph /\ x e. ( A [,) C ) ) -> C <_ B ) |
| 51 | 47 36 46 44 50 | xrltletrd | |- ( ( ph /\ x e. ( A [,) C ) ) -> x < B ) |
| 52 | 41 46 47 49 51 | elicod | |- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( A [,) B ) ) |
| 53 | 45 52 | elind | |- ( ( ph /\ x e. ( A [,) C ) ) -> x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) ) |
| 54 | 34 53 | impbida | |- ( ph -> ( x e. ( ( -oo (,) C ) i^i ( A [,) B ) ) <-> x e. ( A [,) C ) ) ) |
| 55 | 54 | eqrdv | |- ( ph -> ( ( -oo (,) C ) i^i ( A [,) B ) ) = ( A [,) C ) ) |
| 56 | 5 | eqcomi | |- ( K |`t ( A [,) B ) ) = J |
| 57 | 56 | a1i | |- ( ph -> ( K |`t ( A [,) B ) ) = J ) |
| 58 | 15 55 57 | 3eltr3d | |- ( ph -> ( A [,) C ) e. J ) |