This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iccsuble.1 | |- ( ph -> A e. RR ) |
|
| iccsuble.2 | |- ( ph -> B e. RR ) |
||
| iccsuble.3 | |- ( ph -> C e. ( A [,] B ) ) |
||
| iccsuble.4 | |- ( ph -> D e. ( A [,] B ) ) |
||
| Assertion | iccsuble | |- ( ph -> ( C - D ) <_ ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccsuble.1 | |- ( ph -> A e. RR ) |
|
| 2 | iccsuble.2 | |- ( ph -> B e. RR ) |
|
| 3 | iccsuble.3 | |- ( ph -> C e. ( A [,] B ) ) |
|
| 4 | iccsuble.4 | |- ( ph -> D e. ( A [,] B ) ) |
|
| 5 | eliccre | |- ( ( A e. RR /\ B e. RR /\ C e. ( A [,] B ) ) -> C e. RR ) |
|
| 6 | 1 2 3 5 | syl3anc | |- ( ph -> C e. RR ) |
| 7 | eliccre | |- ( ( A e. RR /\ B e. RR /\ D e. ( A [,] B ) ) -> D e. RR ) |
|
| 8 | 1 2 4 7 | syl3anc | |- ( ph -> D e. RR ) |
| 9 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
|
| 10 | 1 2 9 | syl2anc | |- ( ph -> ( C e. ( A [,] B ) <-> ( C e. RR /\ A <_ C /\ C <_ B ) ) ) |
| 11 | 3 10 | mpbid | |- ( ph -> ( C e. RR /\ A <_ C /\ C <_ B ) ) |
| 12 | 11 | simp3d | |- ( ph -> C <_ B ) |
| 13 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( D e. ( A [,] B ) <-> ( D e. RR /\ A <_ D /\ D <_ B ) ) ) |
|
| 14 | 1 2 13 | syl2anc | |- ( ph -> ( D e. ( A [,] B ) <-> ( D e. RR /\ A <_ D /\ D <_ B ) ) ) |
| 15 | 4 14 | mpbid | |- ( ph -> ( D e. RR /\ A <_ D /\ D <_ B ) ) |
| 16 | 15 | simp2d | |- ( ph -> A <_ D ) |
| 17 | 6 1 2 8 12 16 | le2subd | |- ( ph -> ( C - D ) <_ ( B - A ) ) |