This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccntr.1 | |- ( A / R ) = C |
|
| icccntr.2 | |- ( B / R ) = D |
||
| Assertion | icccntr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccntr.1 | |- ( A / R ) = C |
|
| 2 | icccntr.2 | |- ( B / R ) = D |
|
| 3 | simpl | |- ( ( X e. RR /\ R e. RR+ ) -> X e. RR ) |
|
| 4 | rerpdivcl | |- ( ( X e. RR /\ R e. RR+ ) -> ( X / R ) e. RR ) |
|
| 5 | 3 4 | 2thd | |- ( ( X e. RR /\ R e. RR+ ) -> ( X e. RR <-> ( X / R ) e. RR ) ) |
| 6 | 5 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. RR <-> ( X / R ) e. RR ) ) |
| 7 | elrp | |- ( R e. RR+ <-> ( R e. RR /\ 0 < R ) ) |
|
| 8 | lediv1 | |- ( ( A e. RR /\ X e. RR /\ ( R e. RR /\ 0 < R ) ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) |
|
| 9 | 7 8 | syl3an3b | |- ( ( A e. RR /\ X e. RR /\ R e. RR+ ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) |
| 10 | 9 | 3expb | |- ( ( A e. RR /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) |
| 11 | 10 | adantlr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> ( A / R ) <_ ( X / R ) ) ) |
| 12 | 1 | breq1i | |- ( ( A / R ) <_ ( X / R ) <-> C <_ ( X / R ) ) |
| 13 | 11 12 | bitrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( A <_ X <-> C <_ ( X / R ) ) ) |
| 14 | lediv1 | |- ( ( X e. RR /\ B e. RR /\ ( R e. RR /\ 0 < R ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) |
|
| 15 | 7 14 | syl3an3b | |- ( ( X e. RR /\ B e. RR /\ R e. RR+ ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) |
| 16 | 15 | 3expb | |- ( ( X e. RR /\ ( B e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) |
| 17 | 16 | an12s | |- ( ( B e. RR /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) |
| 18 | 17 | adantll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ ( B / R ) ) ) |
| 19 | 2 | breq2i | |- ( ( X / R ) <_ ( B / R ) <-> ( X / R ) <_ D ) |
| 20 | 18 19 | bitrdi | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X <_ B <-> ( X / R ) <_ D ) ) |
| 21 | 6 13 20 | 3anbi123d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( ( X e. RR /\ A <_ X /\ X <_ B ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) |
| 22 | elicc2 | |- ( ( A e. RR /\ B e. RR ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
|
| 23 | 22 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X e. RR /\ A <_ X /\ X <_ B ) ) ) |
| 24 | rerpdivcl | |- ( ( A e. RR /\ R e. RR+ ) -> ( A / R ) e. RR ) |
|
| 25 | 1 24 | eqeltrrid | |- ( ( A e. RR /\ R e. RR+ ) -> C e. RR ) |
| 26 | rerpdivcl | |- ( ( B e. RR /\ R e. RR+ ) -> ( B / R ) e. RR ) |
|
| 27 | 2 26 | eqeltrrid | |- ( ( B e. RR /\ R e. RR+ ) -> D e. RR ) |
| 28 | elicc2 | |- ( ( C e. RR /\ D e. RR ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) |
|
| 29 | 25 27 28 | syl2an | |- ( ( ( A e. RR /\ R e. RR+ ) /\ ( B e. RR /\ R e. RR+ ) ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) |
| 30 | 29 | anandirs | |- ( ( ( A e. RR /\ B e. RR ) /\ R e. RR+ ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) |
| 31 | 30 | adantrl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( ( X / R ) e. ( C [,] D ) <-> ( ( X / R ) e. RR /\ C <_ ( X / R ) /\ ( X / R ) <_ D ) ) ) |
| 32 | 21 23 31 | 3bitr4d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) |