This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | icccntri.1 | |- A e. RR |
|
| icccntri.2 | |- B e. RR |
||
| icccntri.3 | |- R e. RR+ |
||
| icccntri.4 | |- ( A / R ) = C |
||
| icccntri.5 | |- ( B / R ) = D |
||
| Assertion | icccntri | |- ( X e. ( A [,] B ) -> ( X / R ) e. ( C [,] D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | icccntri.1 | |- A e. RR |
|
| 2 | icccntri.2 | |- B e. RR |
|
| 3 | icccntri.3 | |- R e. RR+ |
|
| 4 | icccntri.4 | |- ( A / R ) = C |
|
| 5 | icccntri.5 | |- ( B / R ) = D |
|
| 6 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 7 | 1 2 6 | mp2an | |- ( A [,] B ) C_ RR |
| 8 | 7 | sseli | |- ( X e. ( A [,] B ) -> X e. RR ) |
| 9 | 4 5 | icccntr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( X e. RR /\ R e. RR+ ) ) -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) |
| 10 | 1 2 9 | mpanl12 | |- ( ( X e. RR /\ R e. RR+ ) -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) |
| 11 | 3 10 | mpan2 | |- ( X e. RR -> ( X e. ( A [,] B ) <-> ( X / R ) e. ( C [,] D ) ) ) |
| 12 | 11 | biimpd | |- ( X e. RR -> ( X e. ( A [,] B ) -> ( X / R ) e. ( C [,] D ) ) ) |
| 13 | 8 12 | mpcom | |- ( X e. ( A [,] B ) -> ( X / R ) e. ( C [,] D ) ) |