This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space commutative/associative law. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsub32 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) -h C ) = ( ( A -h C ) -h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvcom | |- ( ( B e. ~H /\ C e. ~H ) -> ( B +h C ) = ( C +h B ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B +h C ) = ( C +h B ) ) |
| 3 | 2 | oveq2d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A -h ( B +h C ) ) = ( A -h ( C +h B ) ) ) |
| 4 | hvsubass | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) -h C ) = ( A -h ( B +h C ) ) ) |
|
| 5 | hvsubass | |- ( ( A e. ~H /\ C e. ~H /\ B e. ~H ) -> ( ( A -h C ) -h B ) = ( A -h ( C +h B ) ) ) |
|
| 6 | 5 | 3com23 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h C ) -h B ) = ( A -h ( C +h B ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A -h B ) -h C ) = ( ( A -h C ) -h B ) ) |