This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of sum and difference of Hilbert space vectors. (Contributed by NM, 27-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddsubass | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( A +h ( B -h C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | |- -u 1 e. CC |
|
| 2 | hvmulcl | |- ( ( -u 1 e. CC /\ C e. ~H ) -> ( -u 1 .h C ) e. ~H ) |
|
| 3 | 1 2 | mpan | |- ( C e. ~H -> ( -u 1 .h C ) e. ~H ) |
| 4 | ax-hvass | |- ( ( A e. ~H /\ B e. ~H /\ ( -u 1 .h C ) e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
|
| 5 | 3 4 | syl3an3 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h ( -u 1 .h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
| 6 | hvaddcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
|
| 7 | hvsubval | |- ( ( ( A +h B ) e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( ( A +h B ) +h ( -u 1 .h C ) ) ) |
|
| 8 | 6 7 | stoic3 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( ( A +h B ) +h ( -u 1 .h C ) ) ) |
| 9 | hvsubval | |- ( ( B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) |
|
| 10 | 9 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( B -h C ) = ( B +h ( -u 1 .h C ) ) ) |
| 11 | 10 | oveq2d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B -h C ) ) = ( A +h ( B +h ( -u 1 .h C ) ) ) ) |
| 12 | 5 8 11 | 3eqtr4d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) -h C ) = ( A +h ( B -h C ) ) ) |