This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | |- A e. ~H |
|
| hvnegdi.2 | |- B e. ~H |
||
| hvaddcan.3 | |- C e. ~H |
||
| Assertion | hvaddcani | |- ( ( A +h B ) = ( A +h C ) <-> B = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | |- A e. ~H |
|
| 2 | hvnegdi.2 | |- B e. ~H |
|
| 3 | hvaddcan.3 | |- C e. ~H |
|
| 4 | oveq1 | |- ( ( A +h B ) = ( A +h C ) -> ( ( A +h B ) +h ( -u 1 .h A ) ) = ( ( A +h C ) +h ( -u 1 .h A ) ) ) |
|
| 5 | neg1cn | |- -u 1 e. CC |
|
| 6 | 5 1 | hvmulcli | |- ( -u 1 .h A ) e. ~H |
| 7 | 1 2 6 | hvadd32i | |- ( ( A +h B ) +h ( -u 1 .h A ) ) = ( ( A +h ( -u 1 .h A ) ) +h B ) |
| 8 | 1 | hvnegidi | |- ( A +h ( -u 1 .h A ) ) = 0h |
| 9 | 8 | oveq1i | |- ( ( A +h ( -u 1 .h A ) ) +h B ) = ( 0h +h B ) |
| 10 | 2 | hvaddlidi | |- ( 0h +h B ) = B |
| 11 | 7 9 10 | 3eqtri | |- ( ( A +h B ) +h ( -u 1 .h A ) ) = B |
| 12 | 1 3 6 | hvadd32i | |- ( ( A +h C ) +h ( -u 1 .h A ) ) = ( ( A +h ( -u 1 .h A ) ) +h C ) |
| 13 | 8 | oveq1i | |- ( ( A +h ( -u 1 .h A ) ) +h C ) = ( 0h +h C ) |
| 14 | 3 | hvaddlidi | |- ( 0h +h C ) = C |
| 15 | 12 13 14 | 3eqtri | |- ( ( A +h C ) +h ( -u 1 .h A ) ) = C |
| 16 | 4 11 15 | 3eqtr3g | |- ( ( A +h B ) = ( A +h C ) -> B = C ) |
| 17 | oveq2 | |- ( B = C -> ( A +h B ) = ( A +h C ) ) |
|
| 18 | 16 17 | impbii | |- ( ( A +h B ) = ( A +h C ) <-> B = C ) |