This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition law. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvadd4 | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) +h ( C +h D ) ) = ( ( A +h C ) +h ( B +h D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvadd32 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) ) |
|
| 2 | 1 | oveq1d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( ( A +h B ) +h C ) +h D ) = ( ( ( A +h C ) +h B ) +h D ) ) |
| 3 | 2 | 3expa | |- ( ( ( A e. ~H /\ B e. ~H ) /\ C e. ~H ) -> ( ( ( A +h B ) +h C ) +h D ) = ( ( ( A +h C ) +h B ) +h D ) ) |
| 4 | 3 | adantrr | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A +h B ) +h C ) +h D ) = ( ( ( A +h C ) +h B ) +h D ) ) |
| 5 | hvaddcl | |- ( ( A e. ~H /\ B e. ~H ) -> ( A +h B ) e. ~H ) |
|
| 6 | ax-hvass | |- ( ( ( A +h B ) e. ~H /\ C e. ~H /\ D e. ~H ) -> ( ( ( A +h B ) +h C ) +h D ) = ( ( A +h B ) +h ( C +h D ) ) ) |
|
| 7 | 6 | 3expb | |- ( ( ( A +h B ) e. ~H /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A +h B ) +h C ) +h D ) = ( ( A +h B ) +h ( C +h D ) ) ) |
| 8 | 5 7 | sylan | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A +h B ) +h C ) +h D ) = ( ( A +h B ) +h ( C +h D ) ) ) |
| 9 | hvaddcl | |- ( ( A e. ~H /\ C e. ~H ) -> ( A +h C ) e. ~H ) |
|
| 10 | ax-hvass | |- ( ( ( A +h C ) e. ~H /\ B e. ~H /\ D e. ~H ) -> ( ( ( A +h C ) +h B ) +h D ) = ( ( A +h C ) +h ( B +h D ) ) ) |
|
| 11 | 10 | 3expb | |- ( ( ( A +h C ) e. ~H /\ ( B e. ~H /\ D e. ~H ) ) -> ( ( ( A +h C ) +h B ) +h D ) = ( ( A +h C ) +h ( B +h D ) ) ) |
| 12 | 9 11 | sylan | |- ( ( ( A e. ~H /\ C e. ~H ) /\ ( B e. ~H /\ D e. ~H ) ) -> ( ( ( A +h C ) +h B ) +h D ) = ( ( A +h C ) +h ( B +h D ) ) ) |
| 13 | 12 | an4s | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( ( A +h C ) +h B ) +h D ) = ( ( A +h C ) +h ( B +h D ) ) ) |
| 14 | 4 8 13 | 3eqtr3d | |- ( ( ( A e. ~H /\ B e. ~H ) /\ ( C e. ~H /\ D e. ~H ) ) -> ( ( A +h B ) +h ( C +h D ) ) = ( ( A +h C ) +h ( B +h D ) ) ) |