This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law. (Contributed by NM, 16-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvadd32 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvcom | |- ( ( B e. ~H /\ C e. ~H ) -> ( B +h C ) = ( C +h B ) ) |
|
| 2 | 1 | oveq2d | |- ( ( B e. ~H /\ C e. ~H ) -> ( A +h ( B +h C ) ) = ( A +h ( C +h B ) ) ) |
| 3 | 2 | 3adant1 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( A +h ( B +h C ) ) = ( A +h ( C +h B ) ) ) |
| 4 | ax-hvass | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( A +h ( B +h C ) ) ) |
|
| 5 | ax-hvass | |- ( ( A e. ~H /\ C e. ~H /\ B e. ~H ) -> ( ( A +h C ) +h B ) = ( A +h ( C +h B ) ) ) |
|
| 6 | 5 | 3com23 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h C ) +h B ) = ( A +h ( C +h B ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) +h C ) = ( ( A +h C ) +h B ) ) |