This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar product distributive law for Hilbert space operators. (Contributed by NM, 12-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoadddi | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> A e. CC ) |
|
| 2 | ffvelcdm | |- ( ( T : ~H --> ~H /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
|
| 3 | 2 | 3ad2antl2 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( T ` x ) e. ~H ) |
| 4 | ffvelcdm | |- ( ( U : ~H --> ~H /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
|
| 5 | 4 | 3ad2antl3 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( U ` x ) e. ~H ) |
| 6 | ax-hvdistr1 | |- ( ( A e. CC /\ ( T ` x ) e. ~H /\ ( U ` x ) e. ~H ) -> ( A .h ( ( T ` x ) +h ( U ` x ) ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
|
| 7 | 1 3 5 6 | syl3anc | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T ` x ) +h ( U ` x ) ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
| 8 | hosval | |- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( T +op U ) ` x ) = ( ( T ` x ) +h ( U ` x ) ) ) |
|
| 9 | 8 | oveq2d | |- ( ( T : ~H --> ~H /\ U : ~H --> ~H /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
| 10 | 9 | 3expa | |- ( ( ( T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
| 11 | 10 | 3adantl1 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( A .h ( ( T ` x ) +h ( U ` x ) ) ) ) |
| 12 | homval | |- ( ( A e. CC /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
|
| 13 | 12 | 3expa | |- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 14 | 13 | 3adantl3 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op T ) ` x ) = ( A .h ( T ` x ) ) ) |
| 15 | homval | |- ( ( A e. CC /\ U : ~H --> ~H /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
|
| 16 | 15 | 3expa | |- ( ( ( A e. CC /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
| 17 | 16 | 3adantl2 | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op U ) ` x ) = ( A .h ( U ` x ) ) ) |
| 18 | 14 17 | oveq12d | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) = ( ( A .h ( T ` x ) ) +h ( A .h ( U ` x ) ) ) ) |
| 19 | 7 11 18 | 3eqtr4d | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( A .h ( ( T +op U ) ` x ) ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
| 20 | hoaddcl | |- ( ( T : ~H --> ~H /\ U : ~H --> ~H ) -> ( T +op U ) : ~H --> ~H ) |
|
| 21 | 20 | anim2i | |- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( A e. CC /\ ( T +op U ) : ~H --> ~H ) ) |
| 22 | 21 | 3impb | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A e. CC /\ ( T +op U ) : ~H --> ~H ) ) |
| 23 | homval | |- ( ( A e. CC /\ ( T +op U ) : ~H --> ~H /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
|
| 24 | 23 | 3expa | |- ( ( ( A e. CC /\ ( T +op U ) : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
| 25 | 22 24 | sylan | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( A .h ( ( T +op U ) ` x ) ) ) |
| 26 | homulcl | |- ( ( A e. CC /\ T : ~H --> ~H ) -> ( A .op T ) : ~H --> ~H ) |
|
| 27 | homulcl | |- ( ( A e. CC /\ U : ~H --> ~H ) -> ( A .op U ) : ~H --> ~H ) |
|
| 28 | 26 27 | anim12i | |- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( A e. CC /\ U : ~H --> ~H ) ) -> ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) ) |
| 29 | 28 | 3impdi | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) ) |
| 30 | hosval | |- ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
|
| 31 | 30 | 3expa | |- ( ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
| 32 | 29 31 | sylan | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( ( A .op T ) +op ( A .op U ) ) ` x ) = ( ( ( A .op T ) ` x ) +h ( ( A .op U ) ` x ) ) ) |
| 33 | 19 25 32 | 3eqtr4d | |- ( ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) /\ x e. ~H ) -> ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) ) |
| 34 | 33 | ralrimiva | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) ) |
| 35 | homulcl | |- ( ( A e. CC /\ ( T +op U ) : ~H --> ~H ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
|
| 36 | 20 35 | sylan2 | |- ( ( A e. CC /\ ( T : ~H --> ~H /\ U : ~H --> ~H ) ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
| 37 | 36 | 3impb | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op U ) ) : ~H --> ~H ) |
| 38 | hoaddcl | |- ( ( ( A .op T ) : ~H --> ~H /\ ( A .op U ) : ~H --> ~H ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
|
| 39 | 26 27 38 | syl2an | |- ( ( ( A e. CC /\ T : ~H --> ~H ) /\ ( A e. CC /\ U : ~H --> ~H ) ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
| 40 | 39 | 3impdi | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) |
| 41 | hoeq | |- ( ( ( A .op ( T +op U ) ) : ~H --> ~H /\ ( ( A .op T ) +op ( A .op U ) ) : ~H --> ~H ) -> ( A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) <-> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) ) |
|
| 42 | 37 40 41 | syl2anc | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A. x e. ~H ( ( A .op ( T +op U ) ) ` x ) = ( ( ( A .op T ) +op ( A .op U ) ) ` x ) <-> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) ) |
| 43 | 34 42 | mpbid | |- ( ( A e. CC /\ T : ~H --> ~H /\ U : ~H --> ~H ) -> ( A .op ( T +op U ) ) = ( ( A .op T ) +op ( A .op U ) ) ) |