This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | homahom.h | |- H = ( HomA ` C ) |
|
| Assertion | homarel | |- Rel ( X H Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | |- H = ( HomA ` C ) |
|
| 2 | xpss | |- ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) C_ ( _V X. _V ) |
|
| 3 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 4 | 1 | homarcl | |- ( f e. ( X H Y ) -> C e. Cat ) |
| 5 | 1 3 4 | homaf | |- ( f e. ( X H Y ) -> H : ( ( Base ` C ) X. ( Base ` C ) ) --> ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) |
| 6 | 1 3 | homarcl2 | |- ( f e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 | 6 | simpld | |- ( f e. ( X H Y ) -> X e. ( Base ` C ) ) |
| 8 | 6 | simprd | |- ( f e. ( X H Y ) -> Y e. ( Base ` C ) ) |
| 9 | 5 7 8 | fovcdmd | |- ( f e. ( X H Y ) -> ( X H Y ) e. ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) |
| 10 | elelpwi | |- ( ( f e. ( X H Y ) /\ ( X H Y ) e. ~P ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) -> f e. ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) |
|
| 11 | 9 10 | mpdan | |- ( f e. ( X H Y ) -> f e. ( ( ( Base ` C ) X. ( Base ` C ) ) X. _V ) ) |
| 12 | 2 11 | sselid | |- ( f e. ( X H Y ) -> f e. ( _V X. _V ) ) |
| 13 | 12 | ssriv | |- ( X H Y ) C_ ( _V X. _V ) |
| 14 | df-rel | |- ( Rel ( X H Y ) <-> ( X H Y ) C_ ( _V X. _V ) ) |
|
| 15 | 13 14 | mpbir | |- Rel ( X H Y ) |