This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | homahom.h | |- H = ( HomA ` C ) |
|
| Assertion | homa1 | |- ( Z ( X H Y ) F -> Z = <. X , Y >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | |- H = ( HomA ` C ) |
|
| 2 | df-br | |- ( Z ( X H Y ) F <-> <. Z , F >. e. ( X H Y ) ) |
|
| 3 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 4 | 1 | homarcl | |- ( <. Z , F >. e. ( X H Y ) -> C e. Cat ) |
| 5 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 6 | 1 3 | homarcl2 | |- ( <. Z , F >. e. ( X H Y ) -> ( X e. ( Base ` C ) /\ Y e. ( Base ` C ) ) ) |
| 7 | 6 | simpld | |- ( <. Z , F >. e. ( X H Y ) -> X e. ( Base ` C ) ) |
| 8 | 6 | simprd | |- ( <. Z , F >. e. ( X H Y ) -> Y e. ( Base ` C ) ) |
| 9 | 1 3 4 5 7 8 | elhoma | |- ( <. Z , F >. e. ( X H Y ) -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) ) |
| 10 | 2 9 | sylbi | |- ( Z ( X H Y ) F -> ( Z ( X H Y ) F <-> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) ) |
| 11 | 10 | ibi | |- ( Z ( X H Y ) F -> ( Z = <. X , Y >. /\ F e. ( X ( Hom ` C ) Y ) ) ) |
| 12 | 11 | simpld | |- ( Z ( X H Y ) F -> Z = <. X , Y >. ) |