This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homahom.h | |- H = ( HomA ` C ) |
|
| homarcl2.b | |- B = ( Base ` C ) |
||
| Assertion | homarcl2 | |- ( F e. ( X H Y ) -> ( X e. B /\ Y e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | |- H = ( HomA ` C ) |
|
| 2 | homarcl2.b | |- B = ( Base ` C ) |
|
| 3 | elfvdm | |- ( F e. ( H ` <. X , Y >. ) -> <. X , Y >. e. dom H ) |
|
| 4 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 5 | 3 4 | eleq2s | |- ( F e. ( X H Y ) -> <. X , Y >. e. dom H ) |
| 6 | 1 | homarcl | |- ( F e. ( X H Y ) -> C e. Cat ) |
| 7 | 1 2 6 | homaf | |- ( F e. ( X H Y ) -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) ) |
| 8 | 7 | fdmd | |- ( F e. ( X H Y ) -> dom H = ( B X. B ) ) |
| 9 | 5 8 | eleqtrd | |- ( F e. ( X H Y ) -> <. X , Y >. e. ( B X. B ) ) |
| 10 | opelxp | |- ( <. X , Y >. e. ( B X. B ) <-> ( X e. B /\ Y e. B ) ) |
|
| 11 | 9 10 | sylib | |- ( F e. ( X H Y ) -> ( X e. B /\ Y e. B ) ) |