This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An arrow is an ordered pair. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | homahom.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| Assertion | homarel | ⊢ Rel ( 𝑋 𝐻 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | xpss | ⊢ ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ⊆ ( V × V ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 4 | 1 | homarcl | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
| 5 | 1 3 4 | homaf | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐻 : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
| 6 | 1 3 | homarcl2 | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ ( Base ‘ 𝐶 ) ∧ 𝑌 ∈ ( Base ‘ 𝐶 ) ) ) |
| 7 | 6 | simpld | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 8 | 6 | simprd | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 9 | 5 7 8 | fovcdmd | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 𝐻 𝑌 ) ∈ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
| 10 | elelpwi | ⊢ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ( 𝑋 𝐻 𝑌 ) ∈ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) → 𝑓 ∈ ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) | |
| 11 | 9 10 | mpdan | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑓 ∈ ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
| 12 | 2 11 | sselid | ⊢ ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) → 𝑓 ∈ ( V × V ) ) |
| 13 | 12 | ssriv | ⊢ ( 𝑋 𝐻 𝑌 ) ⊆ ( V × V ) |
| 14 | df-rel | ⊢ ( Rel ( 𝑋 𝐻 𝑌 ) ↔ ( 𝑋 𝐻 𝑌 ) ⊆ ( V × V ) ) | |
| 15 | 13 14 | mpbir | ⊢ Rel ( 𝑋 𝐻 𝑌 ) |