This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the domain and codomain of an arrow. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homahom.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| homarcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| Assertion | homarcl2 | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homahom.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | homarcl2.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | elfvdm | ⊢ ( 𝐹 ∈ ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐻 ) | |
| 4 | df-ov | ⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 5 | 3 4 | eleq2s | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 〈 𝑋 , 𝑌 〉 ∈ dom 𝐻 ) |
| 6 | 1 | homarcl | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐶 ∈ Cat ) |
| 7 | 1 2 6 | homaf | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 𝐻 : ( 𝐵 × 𝐵 ) ⟶ 𝒫 ( ( 𝐵 × 𝐵 ) × V ) ) |
| 8 | 7 | fdmd | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → dom 𝐻 = ( 𝐵 × 𝐵 ) ) |
| 9 | 5 8 | eleqtrd | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 10 | opelxp | ⊢ ( 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) | |
| 11 | 9 10 | sylib | ⊢ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |