This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | |- H = ( HomA ` C ) |
|
| homafval.b | |- B = ( Base ` C ) |
||
| homafval.c | |- ( ph -> C e. Cat ) |
||
| homafval.j | |- J = ( Hom ` C ) |
||
| Assertion | homafval | |- ( ph -> H = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | |- H = ( HomA ` C ) |
|
| 2 | homafval.b | |- B = ( Base ` C ) |
|
| 3 | homafval.c | |- ( ph -> C e. Cat ) |
|
| 4 | homafval.j | |- J = ( Hom ` C ) |
|
| 5 | fveq2 | |- ( c = C -> ( Base ` c ) = ( Base ` C ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( c = C -> ( Base ` c ) = B ) |
| 7 | 6 | sqxpeqd | |- ( c = C -> ( ( Base ` c ) X. ( Base ` c ) ) = ( B X. B ) ) |
| 8 | fveq2 | |- ( c = C -> ( Hom ` c ) = ( Hom ` C ) ) |
|
| 9 | 8 4 | eqtr4di | |- ( c = C -> ( Hom ` c ) = J ) |
| 10 | 9 | fveq1d | |- ( c = C -> ( ( Hom ` c ) ` x ) = ( J ` x ) ) |
| 11 | 10 | xpeq2d | |- ( c = C -> ( { x } X. ( ( Hom ` c ) ` x ) ) = ( { x } X. ( J ` x ) ) ) |
| 12 | 7 11 | mpteq12dv | |- ( c = C -> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) |
| 13 | df-homa | |- HomA = ( c e. Cat |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) |-> ( { x } X. ( ( Hom ` c ) ` x ) ) ) ) |
|
| 14 | 2 | fvexi | |- B e. _V |
| 15 | 14 14 | xpex | |- ( B X. B ) e. _V |
| 16 | 15 | mptex | |- ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) e. _V |
| 17 | 12 13 16 | fvmpt | |- ( C e. Cat -> ( HomA ` C ) = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) |
| 18 | 3 17 | syl | |- ( ph -> ( HomA ` C ) = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) |
| 19 | 1 18 | eqtrid | |- ( ph -> H = ( x e. ( B X. B ) |-> ( { x } X. ( J ` x ) ) ) ) |