This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoaddcom | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( S +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op T ) ) |
|
| 2 | oveq2 | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( T +op S ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( S = if ( S : ~H --> ~H , S , 0hop ) -> ( ( S +op T ) = ( T +op S ) <-> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) ) ) |
| 4 | oveq2 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) ) |
|
| 5 | oveq1 | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( T +op if ( S : ~H --> ~H , S , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( T = if ( T : ~H --> ~H , T , 0hop ) -> ( ( if ( S : ~H --> ~H , S , 0hop ) +op T ) = ( T +op if ( S : ~H --> ~H , S , 0hop ) ) <-> ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) ) ) |
| 7 | ho0f | |- 0hop : ~H --> ~H |
|
| 8 | 7 | elimf | |- if ( S : ~H --> ~H , S , 0hop ) : ~H --> ~H |
| 9 | 7 | elimf | |- if ( T : ~H --> ~H , T , 0hop ) : ~H --> ~H |
| 10 | 8 9 | hoaddcomi | |- ( if ( S : ~H --> ~H , S , 0hop ) +op if ( T : ~H --> ~H , T , 0hop ) ) = ( if ( T : ~H --> ~H , T , 0hop ) +op if ( S : ~H --> ~H , S , 0hop ) ) |
| 11 | 3 6 10 | dedth2h | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H ) -> ( S +op T ) = ( T +op S ) ) |