This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative/associative law for Hilbert space operator sum that swaps the second and third terms. (Contributed by NM, 24-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoadd32 | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( ( 𝑅 +op 𝑇 ) +op 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoaddcom | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) |
| 3 | 2 | oveq2d | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) = ( 𝑅 +op ( 𝑇 +op 𝑆 ) ) ) |
| 4 | hoaddass | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( 𝑅 +op ( 𝑆 +op 𝑇 ) ) ) | |
| 5 | hoaddass | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑇 ) +op 𝑆 ) = ( 𝑅 +op ( 𝑇 +op 𝑆 ) ) ) | |
| 6 | 5 | 3com23 | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑇 ) +op 𝑆 ) = ( 𝑅 +op ( 𝑇 +op 𝑆 ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | ⊢ ( ( 𝑅 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑅 +op 𝑆 ) +op 𝑇 ) = ( ( 𝑅 +op 𝑇 ) +op 𝑆 ) ) |