This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topology homeomorphic to the empty set is empty. (Contributed by FL, 18-Aug-2008) (Revised by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmph0 | |- ( J ~= { (/) } <-> J = { (/) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphen | |- ( J ~= { (/) } -> J ~~ { (/) } ) |
|
| 2 | df1o2 | |- 1o = { (/) } |
|
| 3 | 1 2 | breqtrrdi | |- ( J ~= { (/) } -> J ~~ 1o ) |
| 4 | hmphtop1 | |- ( J ~= { (/) } -> J e. Top ) |
|
| 5 | en1top | |- ( J e. Top -> ( J ~~ 1o <-> J = { (/) } ) ) |
|
| 6 | 4 5 | syl | |- ( J ~= { (/) } -> ( J ~~ 1o <-> J = { (/) } ) ) |
| 7 | 3 6 | mpbid | |- ( J ~= { (/) } -> J = { (/) } ) |
| 8 | id | |- ( J = { (/) } -> J = { (/) } ) |
|
| 9 | sn0top | |- { (/) } e. Top |
|
| 10 | hmphref | |- ( { (/) } e. Top -> { (/) } ~= { (/) } ) |
|
| 11 | 9 10 | ax-mp | |- { (/) } ~= { (/) } |
| 12 | 8 11 | eqbrtrdi | |- ( J = { (/) } -> J ~= { (/) } ) |
| 13 | 7 12 | impbii | |- ( J ~= { (/) } <-> J = { (/) } ) |