This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hial2eq2 | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( x .ih A ) = ( x .ih B ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-his1 | |- ( ( A e. ~H /\ x e. ~H ) -> ( A .ih x ) = ( * ` ( x .ih A ) ) ) |
|
| 2 | ax-his1 | |- ( ( B e. ~H /\ x e. ~H ) -> ( B .ih x ) = ( * ` ( x .ih B ) ) ) |
|
| 3 | 1 2 | eqeqan12d | |- ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( A .ih x ) = ( B .ih x ) <-> ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) ) ) |
| 4 | hicl | |- ( ( x e. ~H /\ A e. ~H ) -> ( x .ih A ) e. CC ) |
|
| 5 | 4 | ancoms | |- ( ( A e. ~H /\ x e. ~H ) -> ( x .ih A ) e. CC ) |
| 6 | hicl | |- ( ( x e. ~H /\ B e. ~H ) -> ( x .ih B ) e. CC ) |
|
| 7 | 6 | ancoms | |- ( ( B e. ~H /\ x e. ~H ) -> ( x .ih B ) e. CC ) |
| 8 | cj11 | |- ( ( ( x .ih A ) e. CC /\ ( x .ih B ) e. CC ) -> ( ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) <-> ( x .ih A ) = ( x .ih B ) ) ) |
|
| 9 | 5 7 8 | syl2an | |- ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( * ` ( x .ih A ) ) = ( * ` ( x .ih B ) ) <-> ( x .ih A ) = ( x .ih B ) ) ) |
| 10 | 3 9 | bitr2d | |- ( ( ( A e. ~H /\ x e. ~H ) /\ ( B e. ~H /\ x e. ~H ) ) -> ( ( x .ih A ) = ( x .ih B ) <-> ( A .ih x ) = ( B .ih x ) ) ) |
| 11 | 10 | anandirs | |- ( ( ( A e. ~H /\ B e. ~H ) /\ x e. ~H ) -> ( ( x .ih A ) = ( x .ih B ) <-> ( A .ih x ) = ( B .ih x ) ) ) |
| 12 | 11 | ralbidva | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( x .ih A ) = ( x .ih B ) <-> A. x e. ~H ( A .ih x ) = ( B .ih x ) ) ) |
| 13 | hial2eq | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( A .ih x ) = ( B .ih x ) <-> A = B ) ) |
|
| 14 | 12 13 | bitrd | |- ( ( A e. ~H /\ B e. ~H ) -> ( A. x e. ~H ( x .ih A ) = ( x .ih B ) <-> A = B ) ) |