This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties that determine a complete metric space. (Contributed by NM, 15-Apr-2007) (Revised by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscmet3i.2 | |- J = ( MetOpen ` D ) |
|
| iscmet3i.3 | |- D e. ( Met ` X ) |
||
| iscmet3i.4 | |- ( ( f e. ( Cau ` D ) /\ f : NN --> X ) -> f e. dom ( ~~>t ` J ) ) |
||
| Assertion | iscmet3i | |- D e. ( CMet ` X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmet3i.2 | |- J = ( MetOpen ` D ) |
|
| 2 | iscmet3i.3 | |- D e. ( Met ` X ) |
|
| 3 | iscmet3i.4 | |- ( ( f e. ( Cau ` D ) /\ f : NN --> X ) -> f e. dom ( ~~>t ` J ) ) |
|
| 4 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 5 | 1zzd | |- ( T. -> 1 e. ZZ ) |
|
| 6 | 2 | a1i | |- ( T. -> D e. ( Met ` X ) ) |
| 7 | 4 1 5 6 | iscmet3 | |- ( T. -> ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) ) |
| 8 | 7 | mptru | |- ( D e. ( CMet ` X ) <-> A. f e. ( Cau ` D ) ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 9 | 3 | ex | |- ( f e. ( Cau ` D ) -> ( f : NN --> X -> f e. dom ( ~~>t ` J ) ) ) |
| 10 | 8 9 | mprgbir | |- D e. ( CMet ` X ) |