This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hhssablo | |- ( H e. SH -> ( +h |` ( H X. H ) ) e. AbelOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 | |- ( H = if ( H e. SH , H , ~H ) -> ( H X. H ) = ( if ( H e. SH , H , ~H ) X. H ) ) |
|
| 2 | xpeq2 | |- ( H = if ( H e. SH , H , ~H ) -> ( if ( H e. SH , H , ~H ) X. H ) = ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) |
|
| 3 | 1 2 | eqtrd | |- ( H = if ( H e. SH , H , ~H ) -> ( H X. H ) = ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) |
| 4 | 3 | reseq2d | |- ( H = if ( H e. SH , H , ~H ) -> ( +h |` ( H X. H ) ) = ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) ) |
| 5 | 4 | eleq1d | |- ( H = if ( H e. SH , H , ~H ) -> ( ( +h |` ( H X. H ) ) e. AbelOp <-> ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) e. AbelOp ) ) |
| 6 | helsh | |- ~H e. SH |
|
| 7 | 6 | elimel | |- if ( H e. SH , H , ~H ) e. SH |
| 8 | 7 | hhssabloi | |- ( +h |` ( if ( H e. SH , H , ~H ) X. if ( H e. SH , H , ~H ) ) ) e. AbelOp |
| 9 | 5 8 | dedth | |- ( H e. SH -> ( +h |` ( H X. H ) ) e. AbelOp ) |