This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for haushmph and similar theorems. If the topological property A is preserved under injective preimages, then property A is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | haushmphlem.1 | |- ( J e. A -> J e. Top ) |
|
| haushmphlem.2 | |- ( ( J e. A /\ f : U. K -1-1-> U. J /\ f e. ( K Cn J ) ) -> K e. A ) |
||
| Assertion | haushmphlem | |- ( J ~= K -> ( J e. A -> K e. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haushmphlem.1 | |- ( J e. A -> J e. Top ) |
|
| 2 | haushmphlem.2 | |- ( ( J e. A /\ f : U. K -1-1-> U. J /\ f e. ( K Cn J ) ) -> K e. A ) |
|
| 3 | hmphsym | |- ( J ~= K -> K ~= J ) |
|
| 4 | hmph | |- ( K ~= J <-> ( K Homeo J ) =/= (/) ) |
|
| 5 | n0 | |- ( ( K Homeo J ) =/= (/) <-> E. f f e. ( K Homeo J ) ) |
|
| 6 | simpl | |- ( ( J e. A /\ f e. ( K Homeo J ) ) -> J e. A ) |
|
| 7 | eqid | |- U. K = U. K |
|
| 8 | eqid | |- U. J = U. J |
|
| 9 | 7 8 | hmeof1o | |- ( f e. ( K Homeo J ) -> f : U. K -1-1-onto-> U. J ) |
| 10 | 9 | adantl | |- ( ( J e. A /\ f e. ( K Homeo J ) ) -> f : U. K -1-1-onto-> U. J ) |
| 11 | f1of1 | |- ( f : U. K -1-1-onto-> U. J -> f : U. K -1-1-> U. J ) |
|
| 12 | 10 11 | syl | |- ( ( J e. A /\ f e. ( K Homeo J ) ) -> f : U. K -1-1-> U. J ) |
| 13 | hmeocn | |- ( f e. ( K Homeo J ) -> f e. ( K Cn J ) ) |
|
| 14 | 13 | adantl | |- ( ( J e. A /\ f e. ( K Homeo J ) ) -> f e. ( K Cn J ) ) |
| 15 | 6 12 14 2 | syl3anc | |- ( ( J e. A /\ f e. ( K Homeo J ) ) -> K e. A ) |
| 16 | 15 | expcom | |- ( f e. ( K Homeo J ) -> ( J e. A -> K e. A ) ) |
| 17 | 16 | exlimiv | |- ( E. f f e. ( K Homeo J ) -> ( J e. A -> K e. A ) ) |
| 18 | 5 17 | sylbi | |- ( ( K Homeo J ) =/= (/) -> ( J e. A -> K e. A ) ) |
| 19 | 4 18 | sylbi | |- ( K ~= J -> ( J e. A -> K e. A ) ) |
| 20 | 3 19 | syl | |- ( J ~= K -> ( J e. A -> K e. A ) ) |