This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for haushmph and similar theorems. If the topological property A is preserved under injective preimages, then property A is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | haushmphlem.1 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | |
| haushmphlem.2 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑓 : ∪ 𝐾 –1-1→ ∪ 𝐽 ∧ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ 𝐴 ) | ||
| Assertion | haushmphlem | ⊢ ( 𝐽 ≃ 𝐾 → ( 𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haushmphlem.1 | ⊢ ( 𝐽 ∈ 𝐴 → 𝐽 ∈ Top ) | |
| 2 | haushmphlem.2 | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑓 : ∪ 𝐾 –1-1→ ∪ 𝐽 ∧ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) → 𝐾 ∈ 𝐴 ) | |
| 3 | hmphsym | ⊢ ( 𝐽 ≃ 𝐾 → 𝐾 ≃ 𝐽 ) | |
| 4 | hmph | ⊢ ( 𝐾 ≃ 𝐽 ↔ ( 𝐾 Homeo 𝐽 ) ≠ ∅ ) | |
| 5 | n0 | ⊢ ( ( 𝐾 Homeo 𝐽 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) | |
| 6 | simpl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝐽 ∈ 𝐴 ) | |
| 7 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 8 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 9 | 7 8 | hmeof1o | ⊢ ( 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → 𝑓 : ∪ 𝐾 –1-1-onto→ ∪ 𝐽 ) |
| 10 | 9 | adantl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝑓 : ∪ 𝐾 –1-1-onto→ ∪ 𝐽 ) |
| 11 | f1of1 | ⊢ ( 𝑓 : ∪ 𝐾 –1-1-onto→ ∪ 𝐽 → 𝑓 : ∪ 𝐾 –1-1→ ∪ 𝐽 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝑓 : ∪ 𝐾 –1-1→ ∪ 𝐽 ) |
| 13 | hmeocn | ⊢ ( 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 15 | 6 12 14 2 | syl3anc | ⊢ ( ( 𝐽 ∈ 𝐴 ∧ 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) ) → 𝐾 ∈ 𝐴 ) |
| 16 | 15 | expcom | ⊢ ( 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → ( 𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴 ) ) |
| 17 | 16 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐾 Homeo 𝐽 ) → ( 𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴 ) ) |
| 18 | 5 17 | sylbi | ⊢ ( ( 𝐾 Homeo 𝐽 ) ≠ ∅ → ( 𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴 ) ) |
| 19 | 4 18 | sylbi | ⊢ ( 𝐾 ≃ 𝐽 → ( 𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴 ) ) |
| 20 | 3 19 | syl | ⊢ ( 𝐽 ≃ 𝐾 → ( 𝐽 ∈ 𝐴 → 𝐾 ∈ 𝐴 ) ) |