This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for haushmph and similar theorems. If the topological property A is preserved under injective preimages, then property A is preserved under homeomorphisms. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | haushmphlem.1 | ||
| haushmphlem.2 | |||
| Assertion | haushmphlem |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haushmphlem.1 | ||
| 2 | haushmphlem.2 | ||
| 3 | hmphsym | ||
| 4 | hmph | ||
| 5 | n0 | ||
| 6 | simpl | ||
| 7 | eqid | ||
| 8 | eqid | ||
| 9 | 7 8 | hmeof1o | |
| 10 | 9 | adantl | |
| 11 | f1of1 | ||
| 12 | 10 11 | syl | |
| 13 | hmeocn | ||
| 14 | 13 | adantl | |
| 15 | 6 12 14 2 | syl3anc | |
| 16 | 15 | expcom | |
| 17 | 16 | exlimiv | |
| 18 | 5 17 | sylbi | |
| 19 | 4 18 | sylbi | |
| 20 | 3 19 | syl |