This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compactness is a topological property-that is, for any two homeomorphic topologies, either both are compact or neither is. (Contributed by Jeff Hankins, 30-Jun-2009) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmphmph | |- ( J ~= K -> ( J e. Comp -> K e. Comp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmph | |- ( J ~= K <-> ( J Homeo K ) =/= (/) ) |
|
| 2 | n0 | |- ( ( J Homeo K ) =/= (/) <-> E. f f e. ( J Homeo K ) ) |
|
| 3 | eqid | |- U. J = U. J |
|
| 4 | eqid | |- U. K = U. K |
|
| 5 | 3 4 | hmeof1o | |- ( f e. ( J Homeo K ) -> f : U. J -1-1-onto-> U. K ) |
| 6 | f1ofo | |- ( f : U. J -1-1-onto-> U. K -> f : U. J -onto-> U. K ) |
|
| 7 | 5 6 | syl | |- ( f e. ( J Homeo K ) -> f : U. J -onto-> U. K ) |
| 8 | hmeocn | |- ( f e. ( J Homeo K ) -> f e. ( J Cn K ) ) |
|
| 9 | 4 | cncmp | |- ( ( J e. Comp /\ f : U. J -onto-> U. K /\ f e. ( J Cn K ) ) -> K e. Comp ) |
| 10 | 9 | 3expb | |- ( ( J e. Comp /\ ( f : U. J -onto-> U. K /\ f e. ( J Cn K ) ) ) -> K e. Comp ) |
| 11 | 10 | expcom | |- ( ( f : U. J -onto-> U. K /\ f e. ( J Cn K ) ) -> ( J e. Comp -> K e. Comp ) ) |
| 12 | 7 8 11 | syl2anc | |- ( f e. ( J Homeo K ) -> ( J e. Comp -> K e. Comp ) ) |
| 13 | 12 | exlimiv | |- ( E. f f e. ( J Homeo K ) -> ( J e. Comp -> K e. Comp ) ) |
| 14 | 2 13 | sylbi | |- ( ( J Homeo K ) =/= (/) -> ( J e. Comp -> K e. Comp ) ) |
| 15 | 1 14 | sylbi | |- ( J ~= K -> ( J e. Comp -> K e. Comp ) ) |