This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017) (Proof shortened by AV, 21-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rabrsn | |- ( M = { x e. { A } | ph } -> ( M = (/) \/ M = { A } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabsnifsb | |- { x e. { A } | ph } = if ( [. A / x ]. ph , { A } , (/) ) |
|
| 2 | 1 | eqeq2i | |- ( M = { x e. { A } | ph } <-> M = if ( [. A / x ]. ph , { A } , (/) ) ) |
| 3 | ifeqor | |- ( if ( [. A / x ]. ph , { A } , (/) ) = { A } \/ if ( [. A / x ]. ph , { A } , (/) ) = (/) ) |
|
| 4 | orcom | |- ( ( if ( [. A / x ]. ph , { A } , (/) ) = { A } \/ if ( [. A / x ]. ph , { A } , (/) ) = (/) ) <-> ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) |
|
| 5 | 3 4 | mpbi | |- ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) |
| 6 | eqeq1 | |- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = (/) <-> if ( [. A / x ]. ph , { A } , (/) ) = (/) ) ) |
|
| 7 | eqeq1 | |- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = { A } <-> if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) |
|
| 8 | 6 7 | orbi12d | |- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( ( M = (/) \/ M = { A } ) <-> ( if ( [. A / x ]. ph , { A } , (/) ) = (/) \/ if ( [. A / x ]. ph , { A } , (/) ) = { A } ) ) ) |
| 9 | 5 8 | mpbiri | |- ( M = if ( [. A / x ]. ph , { A } , (/) ) -> ( M = (/) \/ M = { A } ) ) |
| 10 | 2 9 | sylbi | |- ( M = { x e. { A } | ph } -> ( M = (/) \/ M = { A } ) ) |