This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set size function # , which gives the cardinality of a finite set as a member of NN0 , and assigns all infinite sets the value +oo . For example, ( #{ 0 , 1 , 2 } ) = 3 ( ex-hash ). (Contributed by Paul Chapman, 22-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hash | |- # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chash | |- # |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | 1 | cv | |- x |
| 4 | caddc | |- + |
|
| 5 | c1 | |- 1 |
|
| 6 | 3 5 4 | co | |- ( x + 1 ) |
| 7 | 1 2 6 | cmpt | |- ( x e. _V |-> ( x + 1 ) ) |
| 8 | cc0 | |- 0 |
|
| 9 | 7 8 | crdg | |- rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |
| 10 | com | |- _om |
|
| 11 | 9 10 | cres | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
| 12 | ccrd | |- card |
|
| 13 | 11 12 | ccom | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) |
| 14 | cfn | |- Fin |
|
| 15 | 2 14 | cdif | |- ( _V \ Fin ) |
| 16 | cpnf | |- +oo |
|
| 17 | 16 | csn | |- { +oo } |
| 18 | 15 17 | cxp | |- ( ( _V \ Fin ) X. { +oo } ) |
| 19 | 13 18 | cun | |- ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |
| 20 | 0 19 | wceq | |- # = ( ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) o. card ) u. ( ( _V \ Fin ) X. { +oo } ) ) |