This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of G maps the size function's value to card . (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashgval.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| Assertion | hashginv | |- ( A e. Fin -> ( `' G ` ( # ` A ) ) = ( card ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgval.1 | |- G = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
|
| 3 | 1 | hashgval | |- ( A e. Fin -> ( G ` ( card ` A ) ) = ( # ` A ) ) |
| 4 | 1 | hashgf1o | |- G : _om -1-1-onto-> NN0 |
| 5 | f1ocnvfv | |- ( ( G : _om -1-1-onto-> NN0 /\ ( card ` A ) e. _om ) -> ( ( G ` ( card ` A ) ) = ( # ` A ) -> ( `' G ` ( # ` A ) ) = ( card ` A ) ) ) |
|
| 6 | 4 5 | mpan | |- ( ( card ` A ) e. _om -> ( ( G ` ( card ` A ) ) = ( # ` A ) -> ( `' G ` ( # ` A ) ) = ( card ` A ) ) ) |
| 7 | 2 3 6 | sylc | |- ( A e. Fin -> ( `' G ` ( # ` A ) ) = ( card ` A ) ) |