This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of G maps the size function's value to card . (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashgval.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| Assertion | hashginv | ⊢ ( 𝐴 ∈ Fin → ( ◡ 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) = ( card ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashgval.1 | ⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
| 3 | 1 | hashgval | ⊢ ( 𝐴 ∈ Fin → ( 𝐺 ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 4 | 1 | hashgf1o | ⊢ 𝐺 : ω –1-1-onto→ ℕ0 |
| 5 | f1ocnvfv | ⊢ ( ( 𝐺 : ω –1-1-onto→ ℕ0 ∧ ( card ‘ 𝐴 ) ∈ ω ) → ( ( 𝐺 ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) → ( ◡ 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) = ( card ‘ 𝐴 ) ) ) | |
| 6 | 4 5 | mpan | ⊢ ( ( card ‘ 𝐴 ) ∈ ω → ( ( 𝐺 ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) → ( ◡ 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) = ( card ‘ 𝐴 ) ) ) |
| 7 | 2 3 6 | sylc | ⊢ ( 𝐴 ∈ Fin → ( ◡ 𝐺 ‘ ( ♯ ‘ 𝐴 ) ) = ( card ‘ 𝐴 ) ) |