This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set of size two is an unordered pair of two different elements. (Contributed by Alexander van der Vekens, 8-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hash2prde | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hash2pr | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b V = { a , b } ) |
|
| 2 | equid | |- b = b |
|
| 3 | vex | |- a e. _V |
|
| 4 | vex | |- b e. _V |
|
| 5 | 3 4 | preqsn | |- ( { a , b } = { b } <-> ( a = b /\ b = b ) ) |
| 6 | eqeq2 | |- ( { a , b } = { b } -> ( V = { a , b } <-> V = { b } ) ) |
|
| 7 | fveq2 | |- ( V = { b } -> ( # ` V ) = ( # ` { b } ) ) |
|
| 8 | hashsng | |- ( b e. _V -> ( # ` { b } ) = 1 ) |
|
| 9 | 8 | elv | |- ( # ` { b } ) = 1 |
| 10 | 7 9 | eqtrdi | |- ( V = { b } -> ( # ` V ) = 1 ) |
| 11 | eqeq1 | |- ( ( # ` V ) = 2 -> ( ( # ` V ) = 1 <-> 2 = 1 ) ) |
|
| 12 | 1ne2 | |- 1 =/= 2 |
|
| 13 | df-ne | |- ( 1 =/= 2 <-> -. 1 = 2 ) |
|
| 14 | pm2.21 | |- ( -. 1 = 2 -> ( 1 = 2 -> a =/= b ) ) |
|
| 15 | 13 14 | sylbi | |- ( 1 =/= 2 -> ( 1 = 2 -> a =/= b ) ) |
| 16 | 12 15 | ax-mp | |- ( 1 = 2 -> a =/= b ) |
| 17 | 16 | eqcoms | |- ( 2 = 1 -> a =/= b ) |
| 18 | 11 17 | biimtrdi | |- ( ( # ` V ) = 2 -> ( ( # ` V ) = 1 -> a =/= b ) ) |
| 19 | 18 | adantl | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> ( ( # ` V ) = 1 -> a =/= b ) ) |
| 20 | 10 19 | syl5com | |- ( V = { b } -> ( ( V e. W /\ ( # ` V ) = 2 ) -> a =/= b ) ) |
| 21 | 6 20 | biimtrdi | |- ( { a , b } = { b } -> ( V = { a , b } -> ( ( V e. W /\ ( # ` V ) = 2 ) -> a =/= b ) ) ) |
| 22 | 21 | impcomd | |- ( { a , b } = { b } -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
| 23 | 5 22 | sylbir | |- ( ( a = b /\ b = b ) -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
| 24 | 2 23 | mpan2 | |- ( a = b -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
| 25 | ax-1 | |- ( a =/= b -> ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) ) |
|
| 26 | 24 25 | pm2.61ine | |- ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> a =/= b ) |
| 27 | simpr | |- ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> V = { a , b } ) |
|
| 28 | 26 27 | jca | |- ( ( ( V e. W /\ ( # ` V ) = 2 ) /\ V = { a , b } ) -> ( a =/= b /\ V = { a , b } ) ) |
| 29 | 28 | ex | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> ( V = { a , b } -> ( a =/= b /\ V = { a , b } ) ) ) |
| 30 | 29 | 2eximdv | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> ( E. a E. b V = { a , b } -> E. a E. b ( a =/= b /\ V = { a , b } ) ) ) |
| 31 | 1 30 | mpd | |- ( ( V e. W /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) |