This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Ordered pair elementhood in a restriction. Exercise 13 of TakeutiZaring p. 25. (Contributed by NM, 13-Nov-1995) (Revised by BJ, 18-Feb-2022) Commute the consequent. (Revised by Peter Mazsa, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | opelres | |- ( C e. V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | |- ( R |` A ) = ( R i^i ( A X. _V ) ) |
|
| 2 | 1 | elin2 | |- ( <. B , C >. e. ( R |` A ) <-> ( <. B , C >. e. R /\ <. B , C >. e. ( A X. _V ) ) ) |
| 3 | opelxp | |- ( <. B , C >. e. ( A X. _V ) <-> ( B e. A /\ C e. _V ) ) |
|
| 4 | elex | |- ( C e. V -> C e. _V ) |
|
| 5 | 4 | biantrud | |- ( C e. V -> ( B e. A <-> ( B e. A /\ C e. _V ) ) ) |
| 6 | 3 5 | bitr4id | |- ( C e. V -> ( <. B , C >. e. ( A X. _V ) <-> B e. A ) ) |
| 7 | 6 | anbi1cd | |- ( C e. V -> ( ( <. B , C >. e. R /\ <. B , C >. e. ( A X. _V ) ) <-> ( B e. A /\ <. B , C >. e. R ) ) ) |
| 8 | 2 7 | bitrid | |- ( C e. V -> ( <. B , C >. e. ( R |` A ) <-> ( B e. A /\ <. B , C >. e. R ) ) ) |