This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the limit relation for Hilbert space. See hlimi for its relational expression. Note that f : NN --> ~H is an infinite sequence of vectors, i.e. a mapping from integers to vectors. Definition of converge in Beran p. 96. (Contributed by NM, 6-Jun-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-hlim | |- ~~>v = { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | chli | |- ~~>v |
|
| 1 | vf | |- f |
|
| 2 | vw | |- w |
|
| 3 | 1 | cv | |- f |
| 4 | cn | |- NN |
|
| 5 | chba | |- ~H |
|
| 6 | 4 5 3 | wf | |- f : NN --> ~H |
| 7 | 2 | cv | |- w |
| 8 | 7 5 | wcel | |- w e. ~H |
| 9 | 6 8 | wa | |- ( f : NN --> ~H /\ w e. ~H ) |
| 10 | vx | |- x |
|
| 11 | crp | |- RR+ |
|
| 12 | vy | |- y |
|
| 13 | vz | |- z |
|
| 14 | cuz | |- ZZ>= |
|
| 15 | 12 | cv | |- y |
| 16 | 15 14 | cfv | |- ( ZZ>= ` y ) |
| 17 | cno | |- normh |
|
| 18 | 13 | cv | |- z |
| 19 | 18 3 | cfv | |- ( f ` z ) |
| 20 | cmv | |- -h |
|
| 21 | 19 7 20 | co | |- ( ( f ` z ) -h w ) |
| 22 | 21 17 | cfv | |- ( normh ` ( ( f ` z ) -h w ) ) |
| 23 | clt | |- < |
|
| 24 | 10 | cv | |- x |
| 25 | 22 24 23 | wbr | |- ( normh ` ( ( f ` z ) -h w ) ) < x |
| 26 | 25 13 16 | wral | |- A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x |
| 27 | 26 12 4 | wrex | |- E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x |
| 28 | 27 10 11 | wral | |- A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x |
| 29 | 9 28 | wa | |- ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) |
| 30 | 29 1 2 | copab | |- { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } |
| 31 | 0 30 | wceq | |- ~~>v = { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } |