This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gtnelicc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| gtnelicc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| gtnelicc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | ||
| gtnelicc.bltc | ⊢ ( 𝜑 → 𝐵 < 𝐶 ) | ||
| Assertion | gtnelicc | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gtnelicc.a | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 2 | gtnelicc.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | gtnelicc.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) | |
| 4 | gtnelicc.bltc | ⊢ ( 𝜑 → 𝐵 < 𝐶 ) | |
| 5 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 6 | xrltnle | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) | |
| 7 | 5 3 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵 ) ) |
| 8 | 4 7 | mpbid | ⊢ ( 𝜑 → ¬ 𝐶 ≤ 𝐵 ) |
| 9 | 8 | intnand | ⊢ ( 𝜑 → ¬ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) |
| 10 | elicc4 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) | |
| 11 | 1 5 3 10 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ↔ ( 𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵 ) ) ) |
| 12 | 9 11 | mtbird | ⊢ ( 𝜑 → ¬ 𝐶 ∈ ( 𝐴 [,] 𝐵 ) ) |