This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Real intervals
gtnelicc
Metamath Proof Explorer
Description: A real number greater than the upper bound of a closed interval is not
an element of the interval. (Contributed by Glauco Siliprandi , 11-Dec-2019)
Ref
Expression
Hypotheses
gtnelicc.a
⊢ φ → A ∈ ℝ *
gtnelicc.b
⊢ φ → B ∈ ℝ
gtnelicc.c
⊢ φ → C ∈ ℝ *
gtnelicc.bltc
⊢ φ → B < C
Assertion
gtnelicc
⊢ φ → ¬ C ∈ A B
Proof
Step
Hyp
Ref
Expression
1
gtnelicc.a
⊢ φ → A ∈ ℝ *
2
gtnelicc.b
⊢ φ → B ∈ ℝ
3
gtnelicc.c
⊢ φ → C ∈ ℝ *
4
gtnelicc.bltc
⊢ φ → B < C
5
2
rexrd
⊢ φ → B ∈ ℝ *
6
xrltnle
⊢ B ∈ ℝ * ∧ C ∈ ℝ * → B < C ↔ ¬ C ≤ B
7
5 3 6
syl2anc
⊢ φ → B < C ↔ ¬ C ≤ B
8
4 7
mpbid
⊢ φ → ¬ C ≤ B
9
8
intnand
⊢ φ → ¬ A ≤ C ∧ C ≤ B
10
elicc4
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ ℝ * → C ∈ A B ↔ A ≤ C ∧ C ≤ B
11
1 5 3 10
syl3anc
⊢ φ → C ∈ A B ↔ A ≤ C ∧ C ≤ B
12
9 11
mtbird
⊢ φ → ¬ C ∈ A B