This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptshft.b | |- B = ( Base ` G ) |
|
| gsummptshft.z | |- .0. = ( 0g ` G ) |
||
| gsummptshft.g | |- ( ph -> G e. CMnd ) |
||
| gsummptshft.k | |- ( ph -> K e. ZZ ) |
||
| gsummptshft.m | |- ( ph -> M e. ZZ ) |
||
| gsummptshft.n | |- ( ph -> N e. ZZ ) |
||
| gsummptshft.a | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. B ) |
||
| gsummptshft.c | |- ( j = ( k - K ) -> A = C ) |
||
| Assertion | gsummptshft | |- ( ph -> ( G gsum ( j e. ( M ... N ) |-> A ) ) = ( G gsum ( k e. ( ( M + K ) ... ( N + K ) ) |-> C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptshft.b | |- B = ( Base ` G ) |
|
| 2 | gsummptshft.z | |- .0. = ( 0g ` G ) |
|
| 3 | gsummptshft.g | |- ( ph -> G e. CMnd ) |
|
| 4 | gsummptshft.k | |- ( ph -> K e. ZZ ) |
|
| 5 | gsummptshft.m | |- ( ph -> M e. ZZ ) |
|
| 6 | gsummptshft.n | |- ( ph -> N e. ZZ ) |
|
| 7 | gsummptshft.a | |- ( ( ph /\ j e. ( M ... N ) ) -> A e. B ) |
|
| 8 | gsummptshft.c | |- ( j = ( k - K ) -> A = C ) |
|
| 9 | ovexd | |- ( ph -> ( M ... N ) e. _V ) |
|
| 10 | 7 | fmpttd | |- ( ph -> ( j e. ( M ... N ) |-> A ) : ( M ... N ) --> B ) |
| 11 | eqid | |- ( j e. ( M ... N ) |-> A ) = ( j e. ( M ... N ) |-> A ) |
|
| 12 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
| 13 | 2 | fvexi | |- .0. e. _V |
| 14 | 13 | a1i | |- ( ph -> .0. e. _V ) |
| 15 | 11 12 7 14 | fsuppmptdm | |- ( ph -> ( j e. ( M ... N ) |-> A ) finSupp .0. ) |
| 16 | 4 5 6 | mptfzshft | |- ( ph -> ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) : ( ( M + K ) ... ( N + K ) ) -1-1-onto-> ( M ... N ) ) |
| 17 | 1 2 3 9 10 15 16 | gsumf1o | |- ( ph -> ( G gsum ( j e. ( M ... N ) |-> A ) ) = ( G gsum ( ( j e. ( M ... N ) |-> A ) o. ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) ) ) |
| 18 | elfzelz | |- ( k e. ( ( M + K ) ... ( N + K ) ) -> k e. ZZ ) |
|
| 19 | 18 | zcnd | |- ( k e. ( ( M + K ) ... ( N + K ) ) -> k e. CC ) |
| 20 | 4 | zcnd | |- ( ph -> K e. CC ) |
| 21 | npcan | |- ( ( k e. CC /\ K e. CC ) -> ( ( k - K ) + K ) = k ) |
|
| 22 | 19 20 21 | syl2anr | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( k - K ) + K ) = k ) |
| 23 | simpr | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> k e. ( ( M + K ) ... ( N + K ) ) ) |
|
| 24 | 22 23 | eqeltrd | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( k - K ) + K ) e. ( ( M + K ) ... ( N + K ) ) ) |
| 25 | 5 6 | jca | |- ( ph -> ( M e. ZZ /\ N e. ZZ ) ) |
| 26 | 25 | adantr | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
| 27 | 18 | adantl | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> k e. ZZ ) |
| 28 | 4 | adantr | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> K e. ZZ ) |
| 29 | 27 28 | zsubcld | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( k - K ) e. ZZ ) |
| 30 | fzaddel | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( k - K ) e. ZZ /\ K e. ZZ ) ) -> ( ( k - K ) e. ( M ... N ) <-> ( ( k - K ) + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
|
| 31 | 26 29 28 30 | syl12anc | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( ( k - K ) e. ( M ... N ) <-> ( ( k - K ) + K ) e. ( ( M + K ) ... ( N + K ) ) ) ) |
| 32 | 24 31 | mpbird | |- ( ( ph /\ k e. ( ( M + K ) ... ( N + K ) ) ) -> ( k - K ) e. ( M ... N ) ) |
| 33 | eqidd | |- ( ph -> ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) = ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) |
|
| 34 | eqidd | |- ( ph -> ( j e. ( M ... N ) |-> A ) = ( j e. ( M ... N ) |-> A ) ) |
|
| 35 | 32 33 34 8 | fmptco | |- ( ph -> ( ( j e. ( M ... N ) |-> A ) o. ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) = ( k e. ( ( M + K ) ... ( N + K ) ) |-> C ) ) |
| 36 | 35 | oveq2d | |- ( ph -> ( G gsum ( ( j e. ( M ... N ) |-> A ) o. ( k e. ( ( M + K ) ... ( N + K ) ) |-> ( k - K ) ) ) ) = ( G gsum ( k e. ( ( M + K ) ... ( N + K ) ) |-> C ) ) ) |
| 37 | 17 36 | eqtrd | |- ( ph -> ( G gsum ( j e. ( M ... N ) |-> A ) ) = ( G gsum ( k e. ( ( M + K ) ... ( N + K ) ) |-> C ) ) ) |