This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptshft.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptshft.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsummptshft.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptshft.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | ||
| gsummptshft.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| gsummptshft.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | ||
| gsummptshft.a | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ 𝐵 ) | ||
| gsummptshft.c | ⊢ ( 𝑗 = ( 𝑘 − 𝐾 ) → 𝐴 = 𝐶 ) | ||
| Assertion | gsummptshft | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptshft.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptshft.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsummptshft.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptshft.k | ⊢ ( 𝜑 → 𝐾 ∈ ℤ ) | |
| 5 | gsummptshft.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 6 | gsummptshft.n | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) | |
| 7 | gsummptshft.a | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ 𝐵 ) | |
| 8 | gsummptshft.c | ⊢ ( 𝑗 = ( 𝑘 − 𝐾 ) → 𝐴 = 𝐶 ) | |
| 9 | ovexd | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ V ) | |
| 10 | 7 | fmpttd | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) : ( 𝑀 ... 𝑁 ) ⟶ 𝐵 ) |
| 11 | eqid | ⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) = ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) | |
| 12 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... 𝑁 ) ∈ Fin ) | |
| 13 | 2 | fvexi | ⊢ 0 ∈ V |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 15 | 11 12 7 14 | fsuppmptdm | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) finSupp 0 ) |
| 16 | 4 5 6 | mptfzshft | ⊢ ( 𝜑 → ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑘 − 𝐾 ) ) : ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) –1-1-onto→ ( 𝑀 ... 𝑁 ) ) |
| 17 | 1 2 3 9 10 15 16 | gsumf1o | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) = ( 𝐺 Σg ( ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ∘ ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑘 − 𝐾 ) ) ) ) ) |
| 18 | elfzelz | ⊢ ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) → 𝑘 ∈ ℤ ) | |
| 19 | 18 | zcnd | ⊢ ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) → 𝑘 ∈ ℂ ) |
| 20 | 4 | zcnd | ⊢ ( 𝜑 → 𝐾 ∈ ℂ ) |
| 21 | npcan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ ) → ( ( 𝑘 − 𝐾 ) + 𝐾 ) = 𝑘 ) | |
| 22 | 19 20 21 | syl2anr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → ( ( 𝑘 − 𝐾 ) + 𝐾 ) = 𝑘 ) |
| 23 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) | |
| 24 | 22 23 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → ( ( 𝑘 − 𝐾 ) + 𝐾 ) ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) |
| 25 | 5 6 | jca | ⊢ ( 𝜑 → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 27 | 18 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → 𝑘 ∈ ℤ ) |
| 28 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → 𝐾 ∈ ℤ ) |
| 29 | 27 28 | zsubcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → ( 𝑘 − 𝐾 ) ∈ ℤ ) |
| 30 | fzaddel | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( ( 𝑘 − 𝐾 ) ∈ ℤ ∧ 𝐾 ∈ ℤ ) ) → ( ( 𝑘 − 𝐾 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑘 − 𝐾 ) + 𝐾 ) ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) ) | |
| 31 | 26 29 28 30 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → ( ( 𝑘 − 𝐾 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑘 − 𝐾 ) + 𝐾 ) ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) ) |
| 32 | 24 31 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ) → ( 𝑘 − 𝐾 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 33 | eqidd | ⊢ ( 𝜑 → ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑘 − 𝐾 ) ) = ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑘 − 𝐾 ) ) ) | |
| 34 | eqidd | ⊢ ( 𝜑 → ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) = ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) | |
| 35 | 32 33 34 8 | fmptco | ⊢ ( 𝜑 → ( ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ∘ ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑘 − 𝐾 ) ) ) = ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ 𝐶 ) ) |
| 36 | 35 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ∘ ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ ( 𝑘 − 𝐾 ) ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ 𝐶 ) ) ) |
| 37 | 17 36 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( ( 𝑀 + 𝐾 ) ... ( 𝑁 + 𝐾 ) ) ↦ 𝐶 ) ) ) |