This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpvlinv.b | |- B = ( Base ` G ) |
|
| grpvlinv.p | |- .+ = ( +g ` G ) |
||
| grpvlinv.n | |- N = ( invg ` G ) |
||
| grpvlinv.z | |- .0. = ( 0g ` G ) |
||
| Assertion | grpvrinv | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( X oF .+ ( N o. X ) ) = ( I X. { .0. } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpvlinv.b | |- B = ( Base ` G ) |
|
| 2 | grpvlinv.p | |- .+ = ( +g ` G ) |
|
| 3 | grpvlinv.n | |- N = ( invg ` G ) |
|
| 4 | grpvlinv.z | |- .0. = ( 0g ` G ) |
|
| 5 | simpll | |- ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> G e. Grp ) |
|
| 6 | elmapi | |- ( X e. ( B ^m I ) -> X : I --> B ) |
|
| 7 | 6 | adantl | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> X : I --> B ) |
| 8 | 7 | ffvelcdmda | |- ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> ( X ` x ) e. B ) |
| 9 | 1 2 4 3 | grprinv | |- ( ( G e. Grp /\ ( X ` x ) e. B ) -> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) = .0. ) |
| 10 | 5 8 9 | syl2anc | |- ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) = .0. ) |
| 11 | 10 | mpteq2dva | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( x e. I |-> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) ) = ( x e. I |-> .0. ) ) |
| 12 | elmapex | |- ( X e. ( B ^m I ) -> ( B e. _V /\ I e. _V ) ) |
|
| 13 | 12 | simprd | |- ( X e. ( B ^m I ) -> I e. _V ) |
| 14 | 13 | adantl | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> I e. _V ) |
| 15 | fvexd | |- ( ( ( G e. Grp /\ X e. ( B ^m I ) ) /\ x e. I ) -> ( N ` ( X ` x ) ) e. _V ) |
|
| 16 | 7 | feqmptd | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> X = ( x e. I |-> ( X ` x ) ) ) |
| 17 | 1 3 | grpinvf | |- ( G e. Grp -> N : B --> B ) |
| 18 | fcompt | |- ( ( N : B --> B /\ X : I --> B ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) |
|
| 19 | 17 6 18 | syl2an | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( N o. X ) = ( x e. I |-> ( N ` ( X ` x ) ) ) ) |
| 20 | 14 8 15 16 19 | offval2 | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( X oF .+ ( N o. X ) ) = ( x e. I |-> ( ( X ` x ) .+ ( N ` ( X ` x ) ) ) ) ) |
| 21 | fconstmpt | |- ( I X. { .0. } ) = ( x e. I |-> .0. ) |
|
| 22 | 21 | a1i | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( I X. { .0. } ) = ( x e. I |-> .0. ) ) |
| 23 | 11 20 22 | 3eqtr4d | |- ( ( G e. Grp /\ X e. ( B ^m I ) ) -> ( X oF .+ ( N o. X ) ) = ( I X. { .0. } ) ) |