This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Tuple-wise right inverse in groups. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpvlinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpvlinv.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpvlinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | ||
| grpvlinv.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpvrinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + ( 𝑁 ∘ 𝑋 ) ) = ( 𝐼 × { 0 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpvlinv.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpvlinv.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpvlinv.n | ⊢ 𝑁 = ( invg ‘ 𝐺 ) | |
| 4 | grpvlinv.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → 𝐺 ∈ Grp ) | |
| 6 | elmapi | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 8 | 7 | ffvelcdmda | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑥 ) ∈ 𝐵 ) |
| 9 | 1 2 4 3 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ‘ 𝑥 ) ∈ 𝐵 ) → ( ( 𝑋 ‘ 𝑥 ) + ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) = 0 ) |
| 10 | 5 8 9 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝑋 ‘ 𝑥 ) + ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) = 0 ) |
| 11 | 10 | mpteq2dva | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑥 ) + ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 12 | elmapex | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) | |
| 13 | 12 | simprd | ⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
| 15 | fvexd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐼 ) → ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ∈ V ) | |
| 16 | 7 | feqmptd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑥 ) ) ) |
| 17 | 1 3 | grpinvf | ⊢ ( 𝐺 ∈ Grp → 𝑁 : 𝐵 ⟶ 𝐵 ) |
| 18 | fcompt | ⊢ ( ( 𝑁 : 𝐵 ⟶ 𝐵 ∧ 𝑋 : 𝐼 ⟶ 𝐵 ) → ( 𝑁 ∘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) | |
| 19 | 17 6 18 | syl2an | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑁 ∘ 𝑋 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) |
| 20 | 14 8 15 16 19 | offval2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + ( 𝑁 ∘ 𝑋 ) ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝑋 ‘ 𝑥 ) + ( 𝑁 ‘ ( 𝑋 ‘ 𝑥 ) ) ) ) ) |
| 21 | fconstmpt | ⊢ ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) | |
| 22 | 21 | a1i | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝐼 × { 0 } ) = ( 𝑥 ∈ 𝐼 ↦ 0 ) ) |
| 23 | 11 20 22 | 3eqtr4d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + ( 𝑁 ∘ 𝑋 ) ) = ( 𝐼 × { 0 } ) ) |