This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of grpsubfval using ax-rep . (Contributed by NM, 31-Mar-2014) (Revised by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 19-Feb-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubval.b | |- B = ( Base ` G ) |
|
| grpsubval.p | |- .+ = ( +g ` G ) |
||
| grpsubval.i | |- I = ( invg ` G ) |
||
| grpsubval.m | |- .- = ( -g ` G ) |
||
| Assertion | grpsubfvalALT | |- .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | |- B = ( Base ` G ) |
|
| 2 | grpsubval.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubval.i | |- I = ( invg ` G ) |
|
| 4 | grpsubval.m | |- .- = ( -g ` G ) |
|
| 5 | fveq2 | |- ( g = G -> ( Base ` g ) = ( Base ` G ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( g = G -> ( Base ` g ) = B ) |
| 7 | fveq2 | |- ( g = G -> ( +g ` g ) = ( +g ` G ) ) |
|
| 8 | 7 2 | eqtr4di | |- ( g = G -> ( +g ` g ) = .+ ) |
| 9 | eqidd | |- ( g = G -> x = x ) |
|
| 10 | fveq2 | |- ( g = G -> ( invg ` g ) = ( invg ` G ) ) |
|
| 11 | 10 3 | eqtr4di | |- ( g = G -> ( invg ` g ) = I ) |
| 12 | 11 | fveq1d | |- ( g = G -> ( ( invg ` g ) ` y ) = ( I ` y ) ) |
| 13 | 8 9 12 | oveq123d | |- ( g = G -> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) = ( x .+ ( I ` y ) ) ) |
| 14 | 6 6 13 | mpoeq123dv | |- ( g = G -> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 15 | df-sbg | |- -g = ( g e. _V |-> ( x e. ( Base ` g ) , y e. ( Base ` g ) |-> ( x ( +g ` g ) ( ( invg ` g ) ` y ) ) ) ) |
|
| 16 | 1 | fvexi | |- B e. _V |
| 17 | 16 16 | mpoex | |- ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) e. _V |
| 18 | 14 15 17 | fvmpt | |- ( G e. _V -> ( -g ` G ) = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 19 | 4 18 | eqtrid | |- ( G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 20 | fvprc | |- ( -. G e. _V -> ( -g ` G ) = (/) ) |
|
| 21 | 4 20 | eqtrid | |- ( -. G e. _V -> .- = (/) ) |
| 22 | fvprc | |- ( -. G e. _V -> ( Base ` G ) = (/) ) |
|
| 23 | 1 22 | eqtrid | |- ( -. G e. _V -> B = (/) ) |
| 24 | 23 | olcd | |- ( -. G e. _V -> ( B = (/) \/ B = (/) ) ) |
| 25 | 0mpo0 | |- ( ( B = (/) \/ B = (/) ) -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) |
|
| 26 | 24 25 | syl | |- ( -. G e. _V -> ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) = (/) ) |
| 27 | 21 26 | eqtr4d | |- ( -. G e. _V -> .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) ) |
| 28 | 19 27 | pm2.61i | |- .- = ( x e. B , y e. B |-> ( x .+ ( I ` y ) ) ) |