This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of grpsubfval using ax-rep . (Contributed by NM, 31-Mar-2014) (Revised by Stefan O'Rear, 27-Mar-2015) (Proof shortened by AV, 19-Feb-2024) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubval.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | ||
| grpsubval.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | grpsubfvalALT | ⊢ − = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubval.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubval.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubval.i | ⊢ 𝐼 = ( invg ‘ 𝐺 ) | |
| 4 | grpsubval.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 5 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝐵 ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = ( +g ‘ 𝐺 ) ) | |
| 8 | 7 2 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( +g ‘ 𝑔 ) = + ) |
| 9 | eqidd | ⊢ ( 𝑔 = 𝐺 → 𝑥 = 𝑥 ) | |
| 10 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( invg ‘ 𝑔 ) = ( invg ‘ 𝐺 ) ) | |
| 11 | 10 3 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( invg ‘ 𝑔 ) = 𝐼 ) |
| 12 | 11 | fveq1d | ⊢ ( 𝑔 = 𝐺 → ( ( invg ‘ 𝑔 ) ‘ 𝑦 ) = ( 𝐼 ‘ 𝑦 ) ) |
| 13 | 8 9 12 | oveq123d | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( +g ‘ 𝑔 ) ( ( invg ‘ 𝑔 ) ‘ 𝑦 ) ) = ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) |
| 14 | 6 6 13 | mpoeq123dv | ⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( +g ‘ 𝑔 ) ( ( invg ‘ 𝑔 ) ‘ 𝑦 ) ) ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 15 | df-sbg | ⊢ -g = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) , 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑥 ( +g ‘ 𝑔 ) ( ( invg ‘ 𝑔 ) ‘ 𝑦 ) ) ) ) | |
| 16 | 1 | fvexi | ⊢ 𝐵 ∈ V |
| 17 | 16 16 | mpoex | ⊢ ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) ∈ V |
| 18 | 14 15 17 | fvmpt | ⊢ ( 𝐺 ∈ V → ( -g ‘ 𝐺 ) = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 19 | 4 18 | eqtrid | ⊢ ( 𝐺 ∈ V → − = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 20 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( -g ‘ 𝐺 ) = ∅ ) | |
| 21 | 4 20 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → − = ∅ ) |
| 22 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( Base ‘ 𝐺 ) = ∅ ) | |
| 23 | 1 22 | eqtrid | ⊢ ( ¬ 𝐺 ∈ V → 𝐵 = ∅ ) |
| 24 | 23 | olcd | ⊢ ( ¬ 𝐺 ∈ V → ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) ) |
| 25 | 0mpo0 | ⊢ ( ( 𝐵 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) = ∅ ) | |
| 26 | 24 25 | syl | ⊢ ( ¬ 𝐺 ∈ V → ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) = ∅ ) |
| 27 | 21 26 | eqtr4d | ⊢ ( ¬ 𝐺 ∈ V → − = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) ) |
| 28 | 19 27 | pm2.61i | ⊢ − = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 + ( 𝐼 ‘ 𝑦 ) ) ) |