This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inverse function of a group. (Contributed by NM, 26-Oct-2006) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvfval.1 | |- X = ran G |
|
| grpinvfval.2 | |- U = ( GId ` G ) |
||
| grpinvfval.3 | |- N = ( inv ` G ) |
||
| Assertion | grpoinvfval | |- ( G e. GrpOp -> N = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvfval.1 | |- X = ran G |
|
| 2 | grpinvfval.2 | |- U = ( GId ` G ) |
|
| 3 | grpinvfval.3 | |- N = ( inv ` G ) |
|
| 4 | rnexg | |- ( G e. GrpOp -> ran G e. _V ) |
|
| 5 | 1 4 | eqeltrid | |- ( G e. GrpOp -> X e. _V ) |
| 6 | mptexg | |- ( X e. _V -> ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) e. _V ) |
|
| 7 | 5 6 | syl | |- ( G e. GrpOp -> ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) e. _V ) |
| 8 | rneq | |- ( g = G -> ran g = ran G ) |
|
| 9 | 8 1 | eqtr4di | |- ( g = G -> ran g = X ) |
| 10 | oveq | |- ( g = G -> ( y g x ) = ( y G x ) ) |
|
| 11 | fveq2 | |- ( g = G -> ( GId ` g ) = ( GId ` G ) ) |
|
| 12 | 11 2 | eqtr4di | |- ( g = G -> ( GId ` g ) = U ) |
| 13 | 10 12 | eqeq12d | |- ( g = G -> ( ( y g x ) = ( GId ` g ) <-> ( y G x ) = U ) ) |
| 14 | 9 13 | riotaeqbidv | |- ( g = G -> ( iota_ y e. ran g ( y g x ) = ( GId ` g ) ) = ( iota_ y e. X ( y G x ) = U ) ) |
| 15 | 9 14 | mpteq12dv | |- ( g = G -> ( x e. ran g |-> ( iota_ y e. ran g ( y g x ) = ( GId ` g ) ) ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
| 16 | df-ginv | |- inv = ( g e. GrpOp |-> ( x e. ran g |-> ( iota_ y e. ran g ( y g x ) = ( GId ` g ) ) ) ) |
|
| 17 | 15 16 | fvmptg | |- ( ( G e. GrpOp /\ ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) e. _V ) -> ( inv ` G ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
| 18 | 7 17 | mpdan | |- ( G e. GrpOp -> ( inv ` G ) = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |
| 19 | 3 18 | eqtrid | |- ( G e. GrpOp -> N = ( x e. X |-> ( iota_ y e. X ( y G x ) = U ) ) ) |