This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction ( npncan2 analog). (Contributed by AV, 24-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | |- B = ( Base ` G ) |
|
| grpsubadd.p | |- .+ = ( +g ` G ) |
||
| grpsubadd.m | |- .- = ( -g ` G ) |
||
| grpnpncan0.0 | |- .0. = ( 0g ` G ) |
||
| Assertion | grpnpncan0 | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | |- B = ( Base ` G ) |
|
| 2 | grpsubadd.p | |- .+ = ( +g ` G ) |
|
| 3 | grpsubadd.m | |- .- = ( -g ` G ) |
|
| 4 | grpnpncan0.0 | |- .0. = ( 0g ` G ) |
|
| 5 | simpl | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> G e. Grp ) |
|
| 6 | simprl | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> X e. B ) |
|
| 7 | simprr | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> Y e. B ) |
|
| 8 | 1 2 3 | grpnpncan | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B /\ X e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = ( X .- X ) ) |
| 9 | 5 6 7 6 8 | syl13anc | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = ( X .- X ) ) |
| 10 | 1 4 3 | grpsubid | |- ( ( G e. Grp /\ X e. B ) -> ( X .- X ) = .0. ) |
| 11 | 10 | adantrr | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( X .- X ) = .0. ) |
| 12 | 9 11 | eqtrd | |- ( ( G e. Grp /\ ( X e. B /\ Y e. B ) ) -> ( ( X .- Y ) .+ ( Y .- X ) ) = .0. ) |