This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for group subtraction ( npncan2 analog). (Contributed by AV, 24-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| grpnpncan0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpnpncan0 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + ( 𝑌 − 𝑋 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubadd.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpsubadd.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grpsubadd.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | grpnpncan0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 5 | simpl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 6 | simprl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 7 | simprr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 8 | 1 2 3 | grpnpncan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + ( 𝑌 − 𝑋 ) ) = ( 𝑋 − 𝑋 ) ) |
| 9 | 5 6 7 6 8 | syl13anc | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + ( 𝑌 − 𝑋 ) ) = ( 𝑋 − 𝑋 ) ) |
| 10 | 1 4 3 | grpsubid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 − 𝑋 ) = 0 ) |
| 11 | 10 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 − 𝑋 ) = 0 ) |
| 12 | 9 11 | eqtrd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 − 𝑌 ) + ( 𝑌 − 𝑋 ) ) = 0 ) |