This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | npncan | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( B - C ) ) = ( A - C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcl | |- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) |
| 3 | addsubass | |- ( ( ( A - B ) e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( ( A - B ) + ( B - C ) ) ) |
|
| 4 | 2 3 | syld3an1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( ( A - B ) + ( B - C ) ) ) |
| 5 | npcan | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) + B ) = A ) |
|
| 6 | 5 | oveq1d | |- ( ( A e. CC /\ B e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( A - C ) ) |
| 7 | 6 | 3adant3 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( ( A - B ) + B ) - C ) = ( A - C ) ) |
| 8 | 4 7 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) + ( B - C ) ) = ( A - C ) ) |