This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An associative cancellation law for groups. (Contributed by Paul Chapman, 17-Apr-2009) (Revised by AV, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplcan.b | |- B = ( Base ` G ) |
|
| grplcan.p | |- .+ = ( +g ` G ) |
||
| grpasscan1.n | |- N = ( invg ` G ) |
||
| Assertion | grpasscan2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplcan.b | |- B = ( Base ` G ) |
|
| 2 | grplcan.p | |- .+ = ( +g ` G ) |
|
| 3 | grpasscan1.n | |- N = ( invg ` G ) |
|
| 4 | simp1 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> G e. Grp ) |
|
| 5 | simp2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> X e. B ) |
|
| 6 | 1 3 | grpinvcl | |- ( ( G e. Grp /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 7 | 6 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( N ` Y ) e. B ) |
| 8 | simp3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> Y e. B ) |
|
| 9 | 1 2 | grpass | |- ( ( G e. Grp /\ ( X e. B /\ ( N ` Y ) e. B /\ Y e. B ) ) -> ( ( X .+ ( N ` Y ) ) .+ Y ) = ( X .+ ( ( N ` Y ) .+ Y ) ) ) |
| 10 | 4 5 7 8 9 | syl13anc | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( N ` Y ) ) .+ Y ) = ( X .+ ( ( N ` Y ) .+ Y ) ) ) |
| 11 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 12 | 1 2 11 3 | grplinv | |- ( ( G e. Grp /\ Y e. B ) -> ( ( N ` Y ) .+ Y ) = ( 0g ` G ) ) |
| 13 | 12 | 3adant2 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( N ` Y ) .+ Y ) = ( 0g ` G ) ) |
| 14 | 13 | oveq2d | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( ( N ` Y ) .+ Y ) ) = ( X .+ ( 0g ` G ) ) ) |
| 15 | 1 2 11 | grprid | |- ( ( G e. Grp /\ X e. B ) -> ( X .+ ( 0g ` G ) ) = X ) |
| 16 | 15 | 3adant3 | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( X .+ ( 0g ` G ) ) = X ) |
| 17 | 10 14 16 | 3eqtrd | |- ( ( G e. Grp /\ X e. B /\ Y e. B ) -> ( ( X .+ ( N ` Y ) ) .+ Y ) = X ) |