This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gimcnv |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ||
| 2 | eqid | ||
| 3 | 1 2 | ghmf | |
| 4 | frel | ||
| 5 | dfrel2 | ||
| 6 | 4 5 | sylib | |
| 7 | 3 6 | syl | |
| 8 | id | ||
| 9 | 7 8 | eqeltrd | |
| 10 | 9 | anim1ci | |
| 11 | isgim2 | ||
| 12 | isgim2 | ||
| 13 | 10 11 12 | 3imtr4i |