This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The exponent of a group is a nonnegative integer. (Contributed by Mario Carneiro, 23-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gexcl.1 | |- X = ( Base ` G ) |
|
| gexcl.2 | |- E = ( gEx ` G ) |
||
| Assertion | gexcl | |- ( G e. V -> E e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gexcl.1 | |- X = ( Base ` G ) |
|
| 2 | gexcl.2 | |- E = ( gEx ` G ) |
|
| 3 | eqid | |- ( .g ` G ) = ( .g ` G ) |
|
| 4 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 5 | eqid | |- { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } = { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } |
|
| 6 | 1 3 4 2 5 | gexlem1 | |- ( G e. V -> ( ( E = 0 /\ { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } = (/) ) \/ E e. { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } ) ) |
| 7 | simpl | |- ( ( E = 0 /\ { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } = (/) ) -> E = 0 ) |
|
| 8 | elrabi | |- ( E e. { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } -> E e. NN ) |
|
| 9 | 7 8 | orim12i | |- ( ( ( E = 0 /\ { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } = (/) ) \/ E e. { y e. NN | A. x e. X ( y ( .g ` G ) x ) = ( 0g ` G ) } ) -> ( E = 0 \/ E e. NN ) ) |
| 10 | 6 9 | syl | |- ( G e. V -> ( E = 0 \/ E e. NN ) ) |
| 11 | 10 | orcomd | |- ( G e. V -> ( E e. NN \/ E = 0 ) ) |
| 12 | elnn0 | |- ( E e. NN0 <-> ( E e. NN \/ E = 0 ) ) |
|
| 13 | 11 12 | sylibr | |- ( G e. V -> E e. NN0 ) |