This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The greatest common divisor of two numbers divides their least common multiple. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcddvdslcm | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || ( M lcm N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 2 | 1 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
| 3 | simpl | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 4 | lcmcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
|
| 5 | 4 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
| 6 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 7 | 6 | simpld | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
| 8 | dvdslcm | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
|
| 9 | 8 | simpld | |- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) |
| 10 | 2 3 5 7 9 | dvdstrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || ( M lcm N ) ) |